
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3712285.3759902
.

.

RESEARCH-ARTICLE

SDR-RDMA: Soware-Defined Reliability Architecture for Planetary
Scale RDMA Communication

MIKHAIL KHALILOV, Swiss Federal Institute of Technology, Zurich, Zurich, ZH, Switzerland
.

SIYUAN SHEN, Swiss Federal Institute of Technology, Zurich, Zurich, ZH, Switzerland
.

MARCIN CHRAPEK, Swiss Federal Institute of Technology, Zurich, Zurich, ZH, Switzerland
.

TIANCHENG CHEN, Swiss Federal Institute of Technology, Zurich, Zurich, ZH, Switzerland
.

KENJI NAKANO, Swiss Federal Institute of Technology, Zurich, Zurich, ZH, Switzerland
.

NICOLA MAZZOLETTI, Swiss National Supercomputing Centre, Lugano, TI, Switzerland
.

View all
.

.

Open Access Support provided by:
.

NVIDIA
.

Microso Corporation
.

Swiss National Supercomputing Centre
.

Swiss Federal Institute of Technology, Zurich
.

PDF Download
3712285.3759902.pdf
11 January 2026
Total Citations: 1
Total Downloads: 2123
.

.

.

.

Published: 16 November 2025
.

.

Citation in BibTeX format
.

.

SC '25: The International Conference
for High Performance Computing,
Networking, Storage and Analysis
November 16 - 21, 2025
MO, St. Louis, USA
.

.

Conference Sponsors:
SIGHPC

SC '25: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (November 2025)
hps://doi.org/10.1145/3712285.3759902

ISBN: 9798400714665

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3712285.3759902
https://dl.acm.org/doi/10.1145/3712285.3759902
https://dl.acm.org/doi/10.1145/contrib-99659708134
https://dl.acm.org/doi/10.1145/institution-60025858
https://dl.acm.org/doi/10.1145/contrib-99660994144
https://dl.acm.org/doi/10.1145/institution-60025858
https://dl.acm.org/doi/10.1145/contrib-99661045585
https://dl.acm.org/doi/10.1145/institution-60025858
https://dl.acm.org/doi/10.1145/contrib-99661754794
https://dl.acm.org/doi/10.1145/institution-60025858
https://dl.acm.org/doi/10.1145/contrib-99661754477
https://dl.acm.org/doi/10.1145/institution-60025858
https://dl.acm.org/doi/10.1145/contrib-99661758100
https://dl.acm.org/doi/10.1145/institution-60032721
https://dl.acm.org/doi/10.1145/3712285.3759902
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60076695
https://dl.acm.org/doi/10.1145/institution-60026532
https://dl.acm.org/doi/10.1145/institution-60032721
https://dl.acm.org/doi/10.1145/institution-60025858
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3712285.3759902&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/sc
https://dl.acm.org/conference/sc
https://dl.acm.org/conference/sc
https://dl.acm.org/sig/sighpc
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712285.3759902&domain=pdf&date_stamp=2025-11-15

SDR-RDMA: Software-Defined Reliability Architecture for
Planetary Scale RDMA Communication

Mikhail Khalilov
ETH Zürich

Zurich, Switzerland
mikhail.khalilov@inf.ethz.ch

Siyuan Shen
ETH Zürich

Zurich, Switzerland
siyuan.shen@inf.ethz.ch

Marcin Chrapek
ETH Zürich

Zurich, Switzerland
marcin.chrapek@inf.ethz.ch

Tiancheng Chen
ETH Zürich

Zurich, Switzerland
tiancheng.chen@inf.ethz.ch

Kenji Nakano
ETH Zürich

Zurich, Switzerland
kenji.nakano@inf.ethz.ch

Nicola Mazzoletti
Swiss National Supercomputing

Centre (CSCS)
Lugano, Switzerland

nicola.mazzoletti@cscs.ch

Peter-Jan Gootzen
NVIDIA Corporation
Zwolle, Netherlands
pgootzen@nvidia.com

Salvatore Di Girolamo
NVIDIA Corporation
Zurich, Switzerland

sdigirolamo@nvidia.com

Rami Nudelman
NVIDIA Corporation
Santa Clara, USA
ramin@nvidia.com

Gil Bloch
NVIDIA Corporation
Yokne’am Illit, Israel
gil@nvidia.com

Jithin Jose
Microsoft Corporation

Redmond, USA
jijos@microsoft.com

Abdul Kabbani
Microsoft Corporation

Redmond, USA
abdulkabbani@microsoft.com

Sreevatsa Anantharamu
Microsoft Corporation

Redmond, USA
anantharamus@microsoft.com

Jie Zhang
Microsoft Corporation

Redmond, USA
zhanj@microsoft.com

Konstantin Taranov
Microsoft Corporation
Zurich, Switzerland

KoTaranov@microsoft.com

Zhuolong Yu
Microsoft Corporation

Redmond, USA
Zhuolongyu@microsoft.com

Scott Moe
Microsoft Corporation

Redmond, USA
scottmoe@microsoft.com

Mahmoud Elhaddad
Microsoft Corporation

Redmond, USA
mahmoud.elhaddad@microsoft.com

Torsten Hoefler
ETH Zürich

Zurich, Switzerland
torsten.hoefler@inf.ethz.ch

Abstract
RDMA is vital for efficient distributed training across datacenters,
but millisecond-scale latencies complicate the design of its reliabil-
ity layer. We show that depending on long-haul link characteristics,
such as drop rate, distance and bandwidth, the widely used Selective
Repeat algorithm can be inefficient, warranting alternatives like
Erasure Coding. To enable such alternatives on existing hardware,
we propose SDR-RDMA, a software-defined reliability stack for

This work is licensed under a Creative Commons Attribution 4.0 International License.
SC ’25, St Louis, MO, USA
© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-1466-5/25/11
https://doi.org/10.1145/3712285.3759902

RDMA. Its core is a lightweight SDR SDK that extends standard
point-to-point RDMA semantics — fundamental to AI networking
stacks — with a receive buffer bitmap. SDR bitmap enables partial
message completion to let applications implement custom reliability
schemes tailored to specific deployments, while preserving zero-
copy RDMA benefits. By offloading the SDR backend to NVIDIA’s
Data Path Accelerator (DPA), we achieve line-rate performance,
enabling efficient inter-datacenter communication and advancing
reliability innovation for inter-datacenter training.

CCS Concepts
• Networks→ Data center networks; Transport protocols.

1223

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0003-0862-4662
https://orcid.org/0009-0003-0061-5072
https://orcid.org/0009-0009-7654-6038
https://orcid.org/0009-0002-8071-2552
https://orcid.org/0009-0000-7701-8258
https://orcid.org/0009-0000-6881-8261
https://orcid.org/0009-0008-8809-254X
https://orcid.org/0000-0003-2197-8860
https://orcid.org/0009-0002-3601-2786
https://orcid.org/0009-0004-6224-9802
https://orcid.org/0000-0001-9549-7918
https://orcid.org/0000-0001-7106-3824
https://orcid.org/0009-0006-0414-2200
https://orcid.org/0000-0002-5223-8446
https://orcid.org/0000-0003-1356-5951
https://orcid.org/0000-0002-8846-5229
https://orcid.org/0009-0007-8500-5810
https://orcid.org/0009-0000-0335-7898
https://orcid.org/0000-0002-1333-9797
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3712285.3759902

SC ’25, November 16–21, 2025, St Louis, MO, USA Khalilov et al.

Keywords
long-haul, reliability, RDMA, offloading, inter-datacenter training

ACM Reference Format:
Mikhail Khalilov, Siyuan Shen, Marcin Chrapek, Tiancheng Chen, Kenji
Nakano, Nicola Mazzoletti, Peter-Jan Gootzen, Salvatore Di Girolamo, Rami
Nudelman, Gil Bloch, Jithin Jose, Abdul Kabbani, Sreevatsa Anantharamu,
Jie Zhang, Konstantin Taranov, Zhuolong Yu, Scott Moe, Mahmoud Elhad-
dad, and Torsten Hoefler. 2025. SDR-RDMA: Software-Defined Reliability
Architecture for Planetary Scale RDMA Communication. In The Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’25), November 16–21, 2025, St Louis, MO, USA. ACM, New York,
NY, USA, 17 pages. https://doi.org/10.1145/3712285.3759902

1 Motivation
"We had to scale to more compute, and that compute was not
available as part of one cluster. We had to go to multi-cluster
training..." — from OpenAI’s "Pre-Training GPT-4.5"
https://www.youtube.com/watch?v=6nJZopACRuQ

The scale of a single AI datacenter is constrained by its power
plant supply capacity [10, 30, 40]. As demand for training resources
grows, hyperscalers are exploring strategies to utilize the com-
pute capacity of multiple datacenters within a single pre-training
job [13, 41, 43]. This necessitates dedicated communication chan-
nels between datacenters spanning thousands of kilometers, po-
tentially between continents, such as long-haul black fiber and
submarine cables [4]. Over such distances, a GPU networking stack
(e.g., xCCL or MPI [15, 35, 45]), tailored for commodity RDMA
Network Interface Cards (NICs), must enable efficient, reliable mes-
saging over lossy connections with millisecond-scale round-trip
times (RTTs).

Reliability schemes in commodity RDMA NICs (e.g., ConnectX-
7/8) are limited to retransmission-based schemes, such as Go-Back-
N and Selective Repeat (SR), implemented in the ASIC to support
multi-hundred-gigabit bandwidths [17]. In Section 2, we illustrate
that constraining reliability to retransmission-based schemes can
be inefficient for serving traffic through a high-delay, lossy cross-
datacenter channel. Our key observation for SR is that message
completion time can accumulate multiple RTTs due to retransmis-
sion timeouts. SR extensions, such as negative acknowledgment,
can minimize the impact of retransmission timeouts in the average
case, but not at the tail [12]. A viable alternative could be to avoid
relying on acknowledgments and timeouts, and instead leverage
erasure coding of application buffers at the transport layer [50, 53].

However, as long as reliability remains part of the NIC ASIC,
realizing alternative algorithms in production deployments would
take years to materialize, since datacenter operators would need
to wait for next-generation silicon to become available [49]. A
possible solution could be prototyping on FPGAs, but as community
experience suggests, FPGAs are generally hard to program and are
not supported in commodity datacenter NICs. Furthermore, existing
FPGA-based prototypes have not been evaluated for upcoming
Tbit/s links [29, 46, 53].

We solve these problems with a software-defined solution illus-
trated in Figure 1. Its bottom software layer — the software-defined
reliability (SDR) middleware SDK — decouples the low-level details

Application buffer in
CPU or accelerator memory

RDMA Engine

SDR SDK
(Section 3)

Application-aware
reliability layer

(Section 4)

UC/UD-like endpoint

Message Bitmap

Inter-DC MPI/CCLs
(Sections 2 and 5)
Reliable Messaging

Chunk 1 Chunk 2 Chunk 3 Chunk 4

Cu
rr

en
t

Ha
rd

w
ar

e
Fu

tu
re

Ha

rd
w

ar
e

Ze
ro

-C
op

y
Da

ta
pa

th

PKT PKT

1 1

PKT PKT

1 1

LOST PKT

1

PKT PKT

1 1

Reliability layer polls bitmap and handles drops

CQE CQE CQE CQE CQE CQE CQE

1 1 0 1

So
ft
w
ar
e

Figure 1: RDMA stack based on the software-defined relia-
bility (SDR) architecture. In all figures throughout the paper,
green corresponds to the hardware-related parts of the SDR
stack and blue encodes software components.

of the packet progress engine from the upper-layer reliability logic.
SDR achieves this through novel partial message completion API
semantics on the receive side. Partial message completion conveys
to the reliability algorithm information about message chunks that
were dropped in transit, represented as a bitmap.

The key design challenge for SDR is sustaining packet processing
at > 100 Gbit/s with minimal overhead on the CPU and system
memory bandwidth. The SDR progress engine uses offloading fea-
tures in the BlueField-3 SuperNIC to achieve high throughput while
exposing a bitmap API to the reliability layer [31]. Namely, SDR
utilizes hardware-based unreliable RDMAWrite for data movement
offloading and offloads the packetization and bitmap-updating logic
to the Data Path Accelerator (DPA) [8, 34]. These design decisions
allow SDR to sustain packet rates on links of up to 3.2 Tbit/s.

Building on the SDR bitmap, we design various SR- and EC-based
reliability schemes. We show that the guided choice and perfor-
mance tuning of an optimal reliability algorithm can improve aver-
age and 99.9th percentile RDMAWrite completion time by up to 5×
and 12×, respectively. This is especially critical for cross-datacenter
AI collectives, where multi-stage execution causes reliability over-
heads to compound and degrade end-to-end performance.

Our main contributions are:

(1) Analysis of inter-datacenter communication challenges.
(2) SDR-RDMA architecture that decouples application-specific

reliability logic from low-level packet processing.
(3) SDR-RDMA data path offloading for full line-rate perfor-

mance on current and next-generation commodity NICs.
(4) Framework to simulate and analyze the performance of SDR-

based reliability algorithms in an inter-datacenter setup.

2 Challenges of inter-DC communication

We show that the NIC reliability algorithm plays a critical role in
the performance of point-to-point and collective long-haul commu-
nication.We identify two hard requirements for the inter-datacenter
networking stack: freedom in the choice of reliability protocol and
support for these protocols at line rate in commodity RDMA NICs.
In our work, we achieve both with a software-defined solution at
the endpoint.

1224

https://doi.org/10.1145/3712285.3759902
https://www.youtube.com/watch?v=6nJZopACRuQ

SDR-RDMA: Software-Defined Reliability Architecture for Planetary Scale RDMA Communication SC ’25, November 16–21, 2025, St Louis, MO, USA

2.1 There is no ideal approach to reliability

10 4 10 3 10 2 10 1

Pdrop

1
2
4
8

UD
P

pa
yl

oa
d

siz
e

[K
iB

]

Figure 2: Packet drop rate measured with iperf3 between 16
UDP flows located in Lugano and Lausanne CSCS datacenter
sites approximately 350 km apart, connected via a 100 Gbit/s
channel. Copper cables are used within both datacenter sites.
An optical connection provided by a local ISP is used to con-
nect the two datacenters. For each payload size, drop rates
are measured over 200 trials of 15 seconds each, conducted
over a 3-day period.

In the inter-datacenter scenario, distances, drop rates, and message
sizes are not only 2–3 orders of magnitude different from the intra-
datacenter case, but can also vary multiple times across deploy-
ments. For example, if we consider cross-datacenter setups from
Livermore to Oak Ridge and from Lugano to Kajaani, we expect
differences of at least 1000 km in total cable lengths, corresponding
to approximately 6.5 ms of added RTT due to geographical features
and the proximity of service infrastructure1.

12
8 K

iB
32

 MiB
8 G

iB
2 T

iB

Write size [Bytes]

1.0

1.5

2.0

2.5

M
ea

n
Sl

ow
do

wn

75
15

00
30

00
45

00
60

00

One-way distance
 [km]

1.0

1.2

1.4

1.6

M
ea

n
Sl

ow
do

wn

10 610 410 2

Pdrop

1

5

10

14

M
ea

n
Sl

ow
do

wn

+1 RTO
+2 RTO
+3 RTO

MDS EC(32,8) SR RTO(3 RTT)

Figure 3: Impact of reliability on message time at 400 Gbit/s.

Left (a): 3750 km = 25 ms RTT, 𝑃𝑑𝑟𝑜𝑝 = 10−5

Middle (b): 8 GiB message, 𝑃𝑑𝑟𝑜𝑝 = 10−5
Right (c): 128 MiB message, 3750 km

Bandwidth and drop rates in inter-datacenter links can vary
widely due to factors like cable technology, budget, and QoS poli-
cies. Figure 2 shows UDP drop rates between two datacenters con-
nected via an optical link from a publicly funded ISP. On both sides,
traffic was isolated from other intra-datacenter traffic, and trials
with endpoint-side drops — tracked through Linux kernel counters
— were excluded. We observe up to three orders of magnitude vari-
ation in drop rates across trials for the same packet size, with drop
rates increasing for larger packets: from 10−4 to 10−2 for 1KiB, and
from 10−3 to over 10−1 for 8 KiB packet sizes, respectively. Such
variability and its correlation with packet size suggest significant
1We consider paths along the public roads traced by Google Maps between locations
of the largest non-private supercomputers in the US (El Capitan, Frontier) and Europe
(Alps, Switzerland and LUMI, Finland) from the November 2024 Top 500 list.

switch buffer congestion on the ISP side. In contrast, data collected
across 15 Microsoft datacenters show that pre-Ethernet-FEC drop
rates on private optical networks can be as low as 10−8 [52].

Figure 17 shows the impact of long-haul channel parameters on
reliability performance at 400 Gbit/s. We compare two schemes (see
Section 4): a standard Selective Repeat (SR) protocol and an Erasure
Coding (EC) scheme. Unlike SR, EC does not rely on retransmissions
but instead sends parity data with the original message. While EC
is not supported by commodity NICs, recent FPGA-based results at
10 Gbit/s[53] suggest that it could reduce retransmission overhead
in high-delay, lossy channels.

We observe that there is no single "best" reliability scheme. In
Figure 17a, SR reaches peak slowdown at the point when at least
one packet in the message is likely to be dropped, given a drop
rate of 10−5. With SR, the retransmission cost for this drop cannot
be hidden in the pipeline — each retransmission significantly con-
tributes to the message completion time. In contrast, the EC-based
scheme remains close to ideal performance because the receiver can
recover from drops in-place using parity data. Above 235 = 32 GiB,
the message becomes large enough for packet injection time to
dominate over channel delay. For such a "large" message, while SR
can efficiently hide the latency of retransmissions behind the time
required to inject the message, the EC-based scheme consumes a
portion of the channel bandwidth to send parity data.

In Figure 17c, with a "small" 128 MiB message at drop rates above
10−4, we observe an increase in completion time from 3× to 10×
due to a single packet requiring multiple retransmission rounds. In
Figure17b, as the cable distance between datacenters increases, an
8 GiB message that was previously considered "large" (dominated
by the injection time) becomes "small" (dominated by RTT delay).
In the "large" interval, SR outperforms EC, whereas in the "small"
interval, the trend is reversed.

The above result suggests that supporting various reliability
schemes in the NIC is essential to enable efficient communication
between two datacenters. Furthermore, when considering a sce-
nario with more than two datacenters, a single endpoint might
communicate with remote endpoints at varying distances. Achiev-
ing optimal message completion times in this scenario may require
per-connection reliability protocol provisioning.

2.2 Need for a software-defined solution
From the bottom-level protocol perspective, current generation
NICs (e.g., RoCEv2) can serve inter-datacenter traffic out-of-the-
box. Their physical, link, and network layers are compatible with
Ethernet and Internet protocols and can operate in lossy mode [48].
The custom RDMA transport logic (e.g., congestion control and
reliability) is implemented above the commodity protocols and runs
at the endpoints (e.g., QPs).

We begin by analyzing the Reliable Connection (RC) Verbs trans-
port, which provides the reliableWrite primitive used by distributed
training libraries [15, 35, 45]. To our knowledge, current RDMA
NICs from Broadcom, Intel, Microsoft, and NVIDIA support only
retransmission-based RC protocols, typically implemented in the
NIC’s ASIC for performance [17]. Since ASIC development cycles
span 3-4 years, adopting and optimizing new reliability protocols,
such as erasure coding (EC), would take years to materialize.

1225

SC ’25, November 16–21, 2025, St Louis, MO, USA Khalilov et al.

Subset API call Description
ctx *context_create(char *dev_name, dev_attr *dev_attr); Allocate HW resources (CQs, DPA threads) shared by QPs.
qp *qp_create(ctx *ctx, qp_attr *qp_attr); Create a queue pair within a context.
int qp_info_get(qp *qp, void *info); Retrieve QP info for out-of-band exchange.

Data path
setup

int qp_connect(qp *qp, void *remote_qp_info); Establish connection between queue pairs using QP info.
Memory mr *mr_reg(ctx *ctx, void *addr, size length, flags flags); Register memory for send/receive via QPs in the context.

int send_stream_start(qp *qp, start_wr *wr, snd_handle **hdl); Create streaming send (w. Imm) message context.
int send_stream_continue(snd_handle *hdl, continue_wr *wr); Send new chunk(s) into a remote buffer (stream) by an offset.
int send_stream_end(snd_handle *hdl); Indicate that no new chunks will be added to the stream.
int send_post(qp *qp, snd_wr *wr, snd_handle **hdl); Initiate a one-shot send (w. Imm) message.

Send

int send_poll(snd_handle *hdl); Poll for a send message completion.
int recv_post(qp *qp, rcv_wr *wr, rcv_handle **hdl); Post a receive message buffer.
int recv_bitmap_get(rcv_handle *hdl, uint8 **bitmap, size *len); Get pointer to the bitmap associated with a receive buffer.
int recv_imm_get(rcv_handle *hdl, uint32 *immediate); Retrieve immediate data if it is ready.Receive

int recv_complete(rcv_handle *hdl); Marks a receive message as complete.
Table 1: SDR API overview. Object metadata (e.g., Write size and offset) is encapsulated into the C structs.

We believe a software-defined approach to RDMA reliability is
the right path forward. Just as QUIC enabled rapid innovation in
transport protocols on top of UDP [22, 27], a software layer over
unreliable RDMA transports can foster fast-paced development,
adoption, and optimization of application-aware reliability proto-
cols tailored for datacenter environments.

2.3 Transport design challenges
Existing RDMA implementations offer support for unreliable trans-
ports, similar to how the operating system provides UDP service to
QUIC. For example, the Verbs API supports Unreliable Datagram
(UD) and Unreliable Connected (UC) [19]. Libfabric API endpoints
could also support datagram service (FI_EP_DGRAM) with mes-
saging and remote memory access operations [36]. Without loss of
generality, we focus our discussion on Verbs:

• UD offers a two-sided per-packet service. Emulation of reliable
Write semantics on top of UD transport is feasible. However, due
to the possibility of out-of-order packets (e.g., because of drops)
it comes at the cost of intermediate packet staging in the host
CPU or NIC memory on the receive side [21, 23].

• UC offers unreliable multi-packet Writes. With UC, out-of-order
packets are not problematic, because the sender side determines
the target memory (address) ofWrite. If at least one packet within
the UC message is dropped, the whole message will be dropped.

UC is ideal for building zero-copy transport, but its coarse com-
pletion semantics are unsuitable for reliability layers. For instance,
if one 4 KiB packet is lost in a 1 GiB Write, the NIC considers the
entire Write lost-forcing the application to retransmit all 1 GiB,
wasting time and bandwidth.

To address this, we introduce a lightweight middleware between
UC and the reliability layer that delivers messages in chunks, each
aligned with the MTU. A bitmap tracks received chunks, allowing
the reliability layer to process available data. EC can use this to
identify and repair losses with parity, while SR uses it to report
dropped chunks to the sender.

3 SDR middleware
Our goal is to enable innovation of reliability algorithms in current
generation RDMA NICs. We achieve this goal with the software-
defined reliability (SDR) SDK, a middleware that extends conven-
tional RDMA completion semantics to support unreliable arbitrary-
length messaging with a partial completion bitmap. The bitmap can
be used by the reliability layer to locate drops within a message.

3.1 Partial message completion API
Table 1 presents the SDR API. We discuss its novel features.

3.1.1 Partial completion bitmap. A key feature of SDR is a partial
completion bitmap enabled on top of standard unreliable RDMA
transports (e.g., unreliable Write). The bitmap is a lightweight soft-
ware abstraction that decouples the reliability protocol logic run-
ning above it from the RDMA progress engine running below it.
SDR users (e.g., a reliability layer) can post a receive buffer and track
chunks that have been received by polling the bits in the associated
bitmap, while packet (de)fragmentation progress is offloaded to the
NIC (handled by the SDR runtime behind the scenes).

A single bit in the bitmap corresponds to a message chunk-a
contiguous block of bytes within a receive buffer. Chunk size is
a multiple of the network Maximum Transfer Unit (MTU) and is
configurable by the user. It can be tailored to the specific needs of
the application running on top of SDR. For example, the bitmap
resolution can be chosen to mask drop bursts within the same
chunk; with a chunk size of 16 packets, dropping 7 packets inside a
chunk would appear to the upper layer as a single chunk drop.

3.1.2 Sender-side optimizations. SDR supports two send types:

• Streaming send offers fine-grained control: new chunk(s) can
target any offset in the remote buffer and are added to the send
stream. For reliability, a typical use case is retransmission — for
example, resending a chunk after a timeout.

• One-shot send prioritizes efficiency when transmitting large con-
tiguous data blocks in a single operation. Once all chunks are
injected, the message context is destroyed.

1226

SDR-RDMA: Software-Defined Reliability Architecture for Planetary Scale RDMA Communication SC ’25, November 16–21, 2025, St Louis, MO, USA

Both APIs are asynchronous to enable overlap between compu-
tation and network injection. By providing two distinct primitives
we allow the sender to select the appropriate granularity, while the
SDR backend can optimize the two send paths independently.

3.1.3 Order-based message matching. SDR is a message-based API:
on the receiver side, there is an association between the receive
buffer and a bitmap state, while the streaming API assumes that
new chunks are added to the same stream queue associated with
a fixed remote buffer. In SDR, message matching between sender
and receiver is order-based: the sender’s send messages "land" in
the receiver’s buffers in the order they were posted.

For example, let’s assume that the receiver posts two receive
buffers in sequence: Recv1, Recv2. When the sender posts the send
messages (e.g., Send1, Send2), the order-based matching ensures
that Send1 targets Recv1, and Send2 targets Recv2. Because SDR
matching is order-based, explicit buffer metadata (e.g., remote mem-
ory key, virtual address, etc.) does not need to be exchanged be-
tween receiver and sender, apart from ensuring that the receive is
posted before the corresponding send is issued.

3.2 Messaging protocol
We illustrate the internal SDR messaging protocol with the client-
server example in Figure 4.

Out-of-band: Clear to Send (CTS)

Send SDR QP
Receive SDR QP

Backend Frontend

0’th Packet Write w ImmImm: MSG_ID=0, PKT_OFFSET=0

recv(&Buf)

1’st Packet Write w ImmImm: MSG_ID=0, PKT_OFFSET=1
2’nd Packet Write w ImmImm: MSG_ID=0, PKT_OFFSET=2
3’rd Packet Write w ImmImm: MSG_ID=0, PKT_OFFSET=3

MSG 0
11|00

MSG 0
11|11

MSG 0
Pkt Bmp:

00|00

MSG 0
10|00

CQE

CQE

CQE

CQE

1 0

1 1

0 0

send(&Buf)

00

1 0

Buf

a

ba

cba

dcda

Chunk Bmp

dcba
Buf

MSG 0
11|10

Figure 4: Example of SDR one-shot send data path with four
packets, two packets per receive bitmap chunk. The protocol
backend can be offloaded to the NIC.

3.2.1 Backend/frontend design. In the backend, SDR relies on UC
as a zero-copy engine for chunk delivery (UD can still be used with
the limitations outlined in Section 2.3).

While sending each chunk with a single RDMA write-with-
immediate over UC would be the simplest solution, this could result
in the entire chunks being dropped if packets are reordered by ISPs.

This limitation arises from the behavior of the receiver’s UC
QP when handling multi-packet messages. Specifically, the UC QP

maintains an expected packet sequence number (ePSN) [19] that
is incremented with each received packet and resets at the start of
every new message. If an incoming packet PSN does not match the
ePSN, the entire message is dropped due to PSN mismatch.

To overcome this limitation, we instead issue one RDMA Write-
with-immediate operation per packet, making each packet being
handled as a single message. While this strategy increases the back-
end processing load, as it requires tracking each individual packet
separately, it enables SDR to handle out-of-order packet delivery.

To efficiently handle per-packet tracking and transport-level
queue management without increasing CPU load, we design the
internal SDR messaging protocol with offloading in mind. The back-
end maintains a per-packet bitmap for each message, which is coa-
lesced into a frontend chunk bitmap. A chunk is only signaled when
all its packets arrive. Through this decoupling, we enable backend
offloading to the Data Path Accelerator (DPA), a programmable
engine in the BlueField-3 SuperNIC designed for parallel traffic
processing [8, 31, 34].

3.2.2 QP creation and connection establishment. During QP setup,
send and receive backends populate message tables and associate
them with each other via an indirect memory key exchanged out-
of-band (Figure 5). The runtime allocates internal buffers for per-
packet (backend) and chunk (frontend) bitmaps, based on the user-
defined maximum message size and bitmap chunk size (4-packet
messages with 2-packet chunks in Figure 4).

Send table Receive table
Buf Mkey

Null Mkey

Buf Mkey
MSG 0
MSG 1

MSG N

Indirect
Root
Mkey

MSG 0
MSG 1

MSG N
… … …

Figure 5: Sender and receiver SDR QPs share a zero-based
rootmemory key, enabling offset-based addressing of receive
buffers. For a QP with maximummessage size𝑀 , message 𝑖
targets the offset range [𝑖 ·𝑀, 𝑖 ·𝑀 +𝑀).

3.2.3 Posting buffers. During the post-receive call, the backend
allocates a context slot in the message table, updates the indirect
root memory key table with the user buffer’s key, and sets up
per-packet and chunk bitmaps. After posting the receive buffer,
the receiver sends an out-of-band clear-to-send (CTS) signal. The
sender can then begin writing new data into the buffer.

3.2.4 Data path. The SDR send operation results in a sequence
of single-packet unreliable Writes — four Writes in our example
target the receiver’s root indirect memory key, where the offsets 0,
𝑀𝑇𝑈 , 2𝑀𝑇𝑈 , and 3𝑀𝑇𝑈 are backed by the receive buffer.

The NIC’s RDMA engine writes the UC packet payload directly
into user buffer. The receive backend then obtains a completion
(CQE or cookie) for the packet. Each CQE includes 32-bit transport
immediate data, divided into three fields:
(1) 10 bits for the message ID (light blue in Imm of Figure 4), allow-

ing up to 1024 in-flight message descriptors per QP.
(2) 18 bits for the packet offset (dark blue in Imm of Figure 4),

supporting up to 1 GiB message size with a 4 KiB MTU.

1227

SC ’25, November 16–21, 2025, St Louis, MO, USA Khalilov et al.

(3) 4 bits for user immediate reconstruction (not shown); for mes-
sages with user immediate, the sender backend samples frag-
ments of it into this field.

This 10 + 18 + 4 bit split reflects our use-case needs. Alternative
splits, such as 8 + 22 + 2, can be used to support larger messages.

Using the immediate fields, the receive backend locates the mes-
sage descriptor and computes the bitmap offset for the packet. In
Figure 4, a packet with offset zero sets the first bit in the packet
bitmap; the second packet sets the second bit. Once all bits for the
first buffer chunk are set, the backend updates the corresponding
bit in the frontend’s chunk bitmap. The same procedure is applied
to the next two packets.

3.3 Late packet arrival protection

Send SDR QP
Receive SDR QP

Backend Frontend
Packet Write w ImmImm: MSG_ID=0

MSG 0 0 ba
complete()
1

LATE PACKET

Figure 6: Late packet arrival problem.

3.3.1 Early receive completion. In the example in Figure 4, the
application may complete a posted receive even if some chunks
have not yet arrived. For instance, a receiver-side timeout (Figure 6)
can trigger early completion while packets are still in flight. Because
the data path is one-sided, the sender remains unaware and may
continue injecting packets for a message that no longer exists. In
both cases, receive context resources (buffer and bitmaps) must be
protected from late arrivals.

3.3.2 Message ID space wraparound. Encoding the message ID in
the transport immediate field is limited to 10 bits, causingwraparound
every 1024messages. If this occurs too fast, late packets may corrupt
the buffer and bitmaps of a newly posted message reusing the same
ID. At 800 Gbit/s and 16 MiB messages, wraparound occurs about
in 100 ms — safe for RTTs below 100 ms. However, switch buffering,
faster links, or smaller messages reduce this safety margin.

We solve both problems with a two-stage protection:
(1) When a message is completed, the corresponding entry in

the root indirect memory key table is updated to point to a
special NULL memory key that discards packet payloads (via
ibv_alloc_null_mr() in Verbs). Writes to the NULL memory
key generate completion entries for late packets, which are
filtered at the second stage.

(2) To prevent bitmap corruption by late packet completion en-
tries, we introduce the concept of message generations. Upon its
creation, an SDR QP allocates multiple internal QPs, each asso-
ciated with its own generation-for example, 4 internal QPs to
support 4 message ID generations. The backend tracks the cur-
rent generation for each message ID slot. For each completion
entry, the current message slot generation is checked against
the generation of the QP that delivered the entry. If they do not
match, the completion entry is discarded.

The generation mechanism increases tolerance for late packets.
Although it requires extra QPs [46], their sequential use is enabled
by traffic’s temporal locality and the rarity of late packet events.

3.4 Backend acceleration

Thread

SDR QP
UC QP

UC QP

CQE

CQE

Ho
st

 M
em

or
y

W
in

do
w

Chunk
Bitmaps

Immediates

DPA

Round Robin packets
across channels

Packet
Bitmaps

Thread

SDR QP
UC QP

UC QP ST

ST

AMOAMO

Sender Receiver
Backend offloading Host Frontend

Inter-DC
channel

Figure 7: Multi-channel SDR offloading architecture.

Packet processing at line rates above 100 Gbit/s requires endpoint
parallelism[5, 16, 21]. To this end, the SDR backend offloads packe-
tization and bitmap processing to the Data Path Accelerator (DPA),
a programmable component of the BlueField-3 and ConnectX-8
SuperNICs [8, 31, 33, 34]. The DPA, with its 256 energy-efficient
hardware threads, is well-suited for parallel processing of SDR
transport Write completions. We implement send- and receive-side
offloading using the user-space Flex IO SDK API, part of the DOCA
SDK. We focus on receive-side offloading, which handles the major
of SDR’s data path logic.

3.4.1 Multi-channel design. We extract traffic parallelism using
the multi-channel design shown in Figure 7. For each message
generation, the backend allocates multiple transport QPs, which
serve traffic in parallel and act as independent channels. The sender
distributes packets of a message across channels, allowing pack-
ets from different channels to be processed concurrently on the
DPA. This is achieved by mapping different channels to separate
completion queues, each polled by a different receive DPA worker
thread. The multi-channel design enables linear scaling of proto-
col bandwidth with the number of DPA worker threads. Further,
by spreading traffic across channel QPs, SDR could leverage intra-
datacenter multi-pathing (e.g., ECMP [14, 18]) and multi-plane
networks [3, 32].

3.4.2 Receive DPA worker. For each packet completion, the DPA
worker thread validates the packet generation and initiates bitmap
processing. The worker uses the packet offset from the transport
immediate to locate and atomically update the corresponding chunk
in the per-packet bitmap stored in DPAmemory. The worker thread
that receives the final missing packet within a chunk also updates
the host-side chunk bitmap over PCIe.

4 Example reliability layers
We discuss how the SDR messaging protocol with bitmap support
can be used as a base primitive to express reliable RDMAWrite. We
compare two example strategies for end-to-end error correction
on top of SDR: Selective Repeat (SR) from the Automatic Repeat
reQuest (ARQ) family of protocols, and Erasure Coding (EC) from
the Forward Error Correction (FEC) family. We choose SR as an

1228

SDR-RDMA: Software-Defined Reliability Architecture for Planetary Scale RDMA Communication SC ’25, November 16–21, 2025, St Louis, MO, USA

example ARQ scheme since it can be proven theoretically that SR
efficiency is at least as good as Go-back-N’s [7].

In ARQ, chunk error correction requires at least one RTT to
trigger retransmission, while FEC uses extra bandwidth to specu-
latively send parity chunks. We develop a theoretical framework
for message completion time and use it to analyze how the core
bandwidth-latency trade-off emerges in RDMA Write over a lossy,
delayed channel.

4.1 Protocols
We illustrate both protocols in Figure 8. We assume that the client
and server have established two uni-directional connections:
• Data-path SDR QP: for zero-copy data transfer.
• Control-path UC (or UD) QP: to exchange protocol acknowledg-
ment packets (ACKs) with low overhead.
Notice that the two-connection design is not a hard requirement,

and we choose it solely for the purposes of our analysis. The SDR
middleware API leaves the control path wireup logic to the applica-
tion implementing reliability, thereby enabling application-aware
optimizations such as the optimized rendezvous protocol [42].

𝐹𝐸𝐶	𝐵𝑙𝑘1

𝐹𝐸𝐶	𝐵𝑙𝑘2

𝐹𝐸𝐶	𝐵𝑙𝑘3

𝐹𝐸𝐶	𝐵𝑙𝑘4 𝐹𝑇𝑂

𝑁𝐴𝐶𝐾: 1001

𝑆𝑅
𝐵𝑙𝑘2
𝐵𝑙𝑘4

Sender Receiver

Drop

Drop

𝐴𝐶𝐾: 1|000
𝐴𝐶𝐾: 2|00
𝐴𝐶𝐾: 3|0
𝐴𝐶𝐾: 4|

𝑃𝑘𝑡1
𝑃𝑘𝑡2
𝑃𝑘𝑡3
𝑃𝑘𝑡4
𝑅𝑇𝑂

Sender Receiver

Drop

Drop

𝐴𝐶𝐾: 1|000
𝐴𝐶𝐾: 1|010
𝐴𝐶𝐾: 1|011

𝐴𝐶𝐾: 4|

𝐴𝐶𝐾: 4|

𝑃𝑘𝑡2

𝑃𝑘𝑡2

𝑅𝑇𝑂

Figure 8: SDR-based SR and EC reliability protocols. Left:
a 4-packet message delivered with SR. Right: an 8-packet
message delivered using 𝐸𝐶 (2, 1).

4.1.1 SR-based reliability. We illustrate a timeout-based scheme
inspired by TCP selective acknowledgment [28], treating it as the
most general design. More advanced schemes, such as negative
acknowledgment (NACK) [25] and retransmission timeout (RTO)
tuning [39], can also be supported. We theoretically analyze how
NACK could improve SR performance in Section 5.2.

SR sender uses streaming SDR send to inject message chunks into
the network. Each chunk is assigned a timeout (𝑅𝑇𝑂 = 𝑅𝑇𝑇 + 𝛼 ·
𝑅𝑇𝑇), where 𝛼 reflects switch buffering along the sender-receiver
path. When the 𝑅𝑇𝑂 expires, the sender retransmits the chunk.
Upon receiving an ACK, the sender removes all chunks within the
acknowledged range from the retransmission queue.

SR receiver periodically polls the message chunk bitmap and
sends ACKs to the sender. Each ACK compactly encodes the re-
ceiver’s bitmap in two parts:

• Cumulative ACK: the highest chunk sequence number for which
all previous chunks have been received.

• Selective ACK: a portion of the bitmap (as much as fits in the ACK
payload), starting from the cumulative ACK.

4.1.2 EC-based reliability. With the EC-based scheme, costly chunk
retransmissions can be avoided by computing (EC encoding) ad-
ditional parity chunks for the data chunks. Parity chunks are sent
speculatively alongside the data chunks-in case any data chunks
are missing and enough parity chunks are received, the missing
data chunks can be recovered (EC decoding).

EC sender splits the message into 𝐿 data submessages of 𝑘 chunks
each, where 𝐿 = 𝑀/𝑘 . Each submessage is erasure coded with𝑚

parity chunks to form a corresponding parity submessage, resulting
in 2𝐿 one-shot SDR sends. Encoding can proceed asynchronously
(e.g., on spare CPU cores [9]) during data transmission, leveraging
SDR’s non-blocking send semantics. After injecting all submessages
and receiving a positive acknowledgment, the sender releases the
message buffer.

EC receiver polls the bitmap and sends a positive ACK once
enough chunks are available to recover all data submessages. If any
submessage bitmap indicates missing chunks, the receiver supplies
the received data and parity chunks to the EC decoder.

Fallback scheme: We must consider an edge case where the re-
ceiver cannot recover a data submessage. For example, in Maximum
Distance Separable (MDS) codes, when the total number of dropped
chunks across the data and corresponding parity submessage ex-
ceeds𝑚. Our fallback strategy is to switch to Selective Repeat for
the failed data submessages. When the receiver sees the first chunk
of a message (the first bit in the bitmap is observed), it sets a fall-
back timeout (𝐹𝑇𝑂 = 𝑀/𝐵𝑊𝑐ℎ𝑎𝑛𝑛𝑒𝑙 + 0.5 · 𝛼 · 𝑅𝑇𝑇). We halve the 𝛼
coefficient from the SR scheme, as only half of the buffering along
the 𝑅𝑇𝑇 path needs to be accounted for. Upon 𝐹𝑇𝑂 expiration, the
receiver sends a negative ACK (NACK) listing the failed data sub-
messages. A global timeout is also set at message posting to prevent
deadlock, though it is assumed to be rarely triggered.

Higher parity-to-data ratios in EC algorithms improve tolerance
to chunk drops but increase channel bandwidth usage. We build
mathematical intuition for this trade-off in the next subsection and
evaluate recovery behavior across EC configurations in Section 5.2.

4.2 Message completion time model

We demonstrated SR- and EC-based reliability schemes built on
SDR and now introduce a statistical framework to evaluate their
performance. Our model captures key inter-datacenter parame-
ters: drop rate, delay, bandwidth, and application message size. It
is released as an open-source Python library, enabling system ar-
chitects to design and tune the reliability layer to specific RDMA
deployments.

4.2.1 Mathematical notation. Our model notation is as follows:

• 𝑀 is the message size in chunks of receive-side bitmap.
• 𝑇𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 (𝑀) is the Write completion time at the sender side
when the reliablity 𝑝𝑟𝑜𝑡𝑜𝑐𝑜𝑙 is used (i.e., the time interval be-
tween the injection of the first chunk and the ACK reception for
the last unacknowledged chunk).

1229

SC ’25, November 16–21, 2025, St Louis, MO, USA Khalilov et al.

• 𝑇𝐼𝑁 𝐽 is the time to inject a chunk into the network (the inverse
of chunk size divided by link bandwidth [1]).

• 𝑃𝑑𝑟𝑜𝑝 is the probability of a chunk drop on the sender-receiver
path. We assume that 𝑃𝑑𝑟𝑜𝑝 is i.i.d for each chunk.

4.2.2 Selective Repeat. Message completion time for SR must ac-
count for all possible positions of a chunk drop.

For the 𝑖-th chunk (with 𝑖 = 1, . . . , 𝑀), we define its time:

𝑋𝑖 = 𝑡start (𝑖) +𝑂
(
𝑌𝑖 − 1

)
,

where:
• 𝑡start (𝑖) = 𝑖 ·𝑇𝐼𝑁 𝐽 is the start time for the 𝑖-th chunk,
• 𝑂 = 𝑅𝑇𝑂 +𝑇𝐼𝑁 𝐽 > 0 is the overhead incurred for each drop,
• 𝑌𝑖 is a geometric random variable with success probability 1 −
𝑃𝑑𝑟𝑜𝑝 . 𝑌𝑖 gives a lower bound on the number of transmissions
needed for successful delivery of the 𝑖-th chunk.
We define the overall completion time of a message as the maxi-

mum over all individual chunk times:

𝑇𝑆𝑅 (𝑀) ≥ max
1≤𝑖≤𝑀

𝑋𝑖 + 𝑅𝑇𝑇 .

Two scenarios must be distinguished in this formulation:
(1) 𝑡start (𝑀) ≤ 𝑅𝑇𝑂 : In this case, the initial offset 𝑡start (𝑖) ensures

that all retransmitted chunks are reinjected into the network at
different times from the initial𝑇0. For example, if chunks 𝑖 and 𝑖+
1 are dropped on their first transmissions, their retransmission
timeouts will differ by𝑇𝐼𝑁 𝐽 , and they will be reinjected at times
𝑇0 + 𝑅𝑇𝑂𝑖 and 𝑇0 + 𝑅𝑇𝑂𝑖 +𝑇𝐼𝑁 𝐽 , respectively.

(2) 𝑡start (𝑀) > 𝑅𝑇𝑂 : In this "large" message case, our derivation
for 𝐸 [𝑇𝑆𝑅] becomes a lower bound on the expected message
completion time. Consider a scenario where the first chunk is
dropped. Its retransmission timestamp occurs before the last
chunk is injected into the network for the first time at 𝑡start (𝑀),
thereby violating serialization.
Two methods are employed to evaluate 𝑇𝑆𝑅 (𝑀): a stochastic

simulation and analytical solution for its expected value. We pro-
vide the derivation of the analytical solution in Appendix A (see
supplemental materials for the paper).

4.2.3 EC-based reliability. Recall that for an erasure code with 𝑘

and 𝑚 chunks in data and parity submessages, respectively, the
total number of independently erasure-coded data submessages is
𝐿 = 𝑀/𝑘 . Let’s denote the probability of successful recovery of a
data submessage (which is a function of 𝑃𝑑𝑟𝑜𝑝) as 𝑃𝐸𝐶 (𝑘,𝑚) .

The expected number of failed data submessages is

𝐸 [failures] = 𝐿 ·
(
1 − 𝑃𝐸𝐶 (𝑘,𝑚)

)
,

and the probability of at least one data submessage failing (i.e., the
probability of fallback to Selective Repeat) is

𝑃𝐸𝐶
𝑓 𝑎𝑙𝑙𝑏𝑎𝑐𝑘

= 1 −
(
𝑃𝐸𝐶 (𝑘,𝑚)

)𝐿
.

Let the parity ratio be 𝑅 = 𝑘/𝑚 for 𝐸𝐶 (𝑘,𝑚). In our protocol, the
receiver sets an SR fallback timeout (𝐹𝑇𝑂) as soon as any chunk of
the message is received (the first bit is observed in the bitmap of
any submessage):

𝐹𝑇𝑂 = (𝑀 + ⌈𝑀/𝑅⌉)𝑇𝐼𝑁 𝐽 + 𝛽 · 𝑅𝑇𝑇 .

Assuming no network congestion or resource contention, two
scenarios may occur on the receiver after 𝐹𝑇𝑂 is set:
(1) By the time 𝐹𝑇𝑂 − 𝛽 · 𝑅𝑇𝑇 , the receiver has received enough

chunks to recover all data submessages and sends back an ACK.
(2) 𝐹𝑇𝑂 expires, and the receiver sends an EC NACK to the sender,

requesting selective repeat of the failed data submessages (each
consisting of 𝑘 data chunks).
Assuming full overlap of data injection and parity computation,

the lower bound on 𝐸 [𝑇𝐸𝐶 (𝑀)], is a sum of the following terms:
(1) Base time to initially send data and parity chunks:

(𝑀 + ⌈𝑀/𝑅⌉) ·𝑇𝐼𝑁 𝐽 ,

(2) Plus the expected time spent in timeout and EC NACK delivery:

𝑃𝐸𝐶
𝑓 𝑎𝑙𝑙𝑏𝑎𝑐𝑘

· (𝑅𝑇𝑇 + 𝛽 · 𝑅𝑇𝑇),

(3) Plus the expected time to retransmit the failed submessages:

𝐸 [𝑇𝑆𝑅 (𝐸 [failures] · 𝑘)] .

5 Evaluation

We examine the following research questions:
(1) How do the discussed SDR-based reliability algorithms perform

in various long-haul scenarios?
(2) How does the choice of reliability scheme impact performance

of inter-datacenter AI training traffic?
(3) Can the SDR middleware enable partial message completion

service at line rate on the current and next-generation NICs?

5.1 Experimental setup

5.1.1 SDR simulation. We implement, using Python 3, a stochastic
simulation for the Write completion time with the SR and EC SDR
protocols presented in Section 4. We validate simulation results
against the analytical expectation for message completion time.
The mean of 1000 samples from the stochastic model matches the
analytical solution within 5% accuracy.

We study two scenarios for the SR-based algorithm. In the first,
SR RTO, we set the SR chunk timeout to 3 network RTTs. In the
second scenario, SR NACK, we reduce the RTO to 1 network RTT as
a best-case approximation of the negative acknowledgment (NACK)
optimization. In SR NACK, the receiver sends a negative signal to
the sender indicating the specific location of the dropped chunk;
therefore, the sender can initiate retransmission in 1 RTT.

For EC-based reliability we compare two erasure codes:
(1) A simple XOR-based code, in which the 𝑖’th parity block (out of

m) is computed as the XOR of all 𝑘 data blocks whose indices
satisfy 𝑗 mod𝑚 = 𝑖 . This code tolerates the loss of up to one
block per each modulo group [37].

(2) AnMDS (MaximumDistance Separable) code (e.g., Reed-Solomon),
which can recover the data submessage from any𝑚 missing
blocks among the total𝑚 + 𝑘 blocks [47].
We study the performance trade-off between these erasure codes.

XOR is simpler and easier to optimize for hardware but offers
weaker chunk loss tolerance. MDS coding provides stronger protec-
tion but is more complex to implement and optimize. In Appendix B

1230

SDR-RDMA: Software-Defined Reliability Architecture for Planetary Scale RDMA Communication SC ’25, November 16–21, 2025, St Louis, MO, USA

(see supplemental materials for the paper), we derive the success
probabilities to decode a data submessage with these schemes. We
implement a parallel XOR-based scheme using OpenMP and AVX-
512 in ≈ 100 lines of C++ and compare it against Intel’s ISA-L
v2.31.1 library [20], which provides an MDS code optimized for
Intel CPUs.

5.1.2 End-to-end SDR testbed. We validate the ability of SDR SDK
to provide its service to the upper reliability layer, a zero-copy
message delivery with partial completion semantics, at line rate.
We evaluate SDR offloading on nodes of the Israel-1 TOP500 pro-
duction supercomputer interconnected with 400 Gbit/s RoCEv2
using NVIDIA Spectrum-X [32]. On each node, we utilize a NVIDIA
BlueField-3 SuperNIC connected to a Xeon Platinum 8480 CPU [31].
SDR middleware was compiled against DOCA SDK 2.9.0.

5.2 Deploying SDR at cross-continent scale
In our first case study, we simulate SDR performance with a hy-
pothetical 400 Gbit/s, 3750 km cross-continent link between two
datacenters (e.g., within the US or Europe). Such a deployment
requires the trade-off between cost and channel QoS (i.e., lower
drop rates). We examine this trade-off in Figure 9 and provide a
detailed analysis of the 128 MiB row and 10−5 column in Figure 10.

5.2.1 Use-case of EC. In red areas of Figure 9, EC outperforms SR
formessages from 128 KiB to 1 GiBwithin the 10−6 to 10−2 drop rate
range. For a fixed drop rate in Figure 10a, a critical message size 1/𝑃 ,
marks the point beyond which chunk drops become likely. When
the Write size nears this point but stays below or comparable to the
bandwidth-delay product, SR retransmissions cannot be masked
with chunk injection time, leading to slowdowns of up to 6.5× on
average and 12.2× at the 99.9th percentile.

The NACK optimization reduces drop detection to 1 RTT, im-
proving SR performance by up to 4× for both average and tail
latencies. However, it cannot address the fundamental issue of SR
shown in Figure 10c: RTT-scale penalty per chunk drop.

EC avoids this issue by recovering losses in-place at the receiver.
Figure 10d evaluates various MDS data-parity splits. Lower data-
to-parity ratios offer stronger protection at high drop rates with
greater bandwidth overhead. We select the (32, 8) configuration
as the most balanced — it tolerates drop rates above 10−2 with no
more than 20% bandwidth inflation.

Efficient EC implementations must hide the encoding overhead.
In Figure 11 we assess the compute cost of achieving this by com-
paring MDS and XOR codes with a (32, 8) split. At 400 Gbit/s, XOR
encoding can be hidden using 4 CPU cores; MDS needs twice as
many. However, XOR trades CPU efficiency for resilience: with a
128 MiB buffer, XOR falls back to SR at ≈ 10−3 drop rate, while
MDS remains robust beyond 10−2.

5.2.2 When to deploy SR?. SR performs best at drop rates below
10−6 and message sizes above 1 GiB. An 8 GiB message, ≈ 8×
smaller than BDP, is bottlenecked by the injection time, with the
final RTT adding little to the total completion time. NACK- and
RTO-based SRs hide retransmissions within the injection pipeline,
whereas EC introduces a 20% parity overhead.

Notice that if we were to consider a deployment with a higher
RTT or more bandwidth as we do in Figure 12, EC would eventually

surpass SR at message size 8 GiB, as retransmissions become more
exposed due to increasing BDP.

For small messages in the bottom rows of Figure 9, SR and EC
result in similar completion times. However, due to the compute
footprint of EC for path encoding (and decoding in case of drops), SR
is preferable. At very high drop rates above 0.1%, EC is ineffective,
as it fails to recover data. As shown in Figure 10b, MDS coding
wastes bandwidth sending parity, ultimately falling back to SR.

5.3 Inter-datacenter AI collectives
The point-to-point RDMA Write networking primitive, studied in
the previous subsection, serves as a building block for collective
algorithms. These algorithms are widely used in large-scale paral-
lelized training (e.g., data parallelism) [6, 15, 24, 35, 51]. Primitives
like Allreduce are used for synchronizing model updates across
geographically distributed datacenters.

Traditional models, such as LogGP [1], assume lossless links
between participants. Although valid for intra-datacenter setups
(e.g., InfiniBand [19], Slingshot [11]), this assumption breaks under
lossy, high-delay channels, where the choice of reliability scheme
becomes paramount, as shown in Figure 13.

In Figure 13, we simulate the performance of the ring Allreduce
algorithm across 𝑁 datacenters with an SDR-based reliability al-
gorithm [44]. Tail completion time is strongly affected by the ring
schedule, which introduces 2𝑁 − 2 interdependent point-to-point
stages. With 4-8 datacenters, messages remain large enough that
latency does not dominate, allowing slowdowns from inefficient
reliability schemes to accumulate. As a result, the EC scheme, which
outperforms SR for drop rates between 10−6 and 10−2, also yields
gains in multi-stage Allreduce. Across both plots, EC’s speedup
over SR grows with the drop rate from 3× to more than 6×.

In the Appendix C (see supplemental materials for the paper), we
analytically show that the expected reliability cost in a ring Allre-
duce is lower bounded by the per-stage cost times the number of
stages, explaining the amplified impact on reliability layer efficiency.
Our analysis generalizes to other stage-based collective algorithms
with schedule dependencies, such as tree algorithms [38]. The SDR
framework enables performance engineers to tailor RDMA trans-
port reliability to minimize this cumulative effect in multi-stage
protocols.

5.4 End-to-end performance with BlueField-3

The analysis in previous case studies highlight the importance
of flexibility in reliability protocol choice, implementation, and
configuration — a capability that motivated the design of our SDR
SDK. In this case study, we subject our offloaded SDR API to a 400
Gbit/s stress test on real hardware.

5.4.1 SDR client-server performance. We implemented a bench-
marking loop on top of SDR middleware API. The benchmark re-
sembles the standard client-server ib_write_bw test from the RDMA
perftest suite [2]. For each message, the server emulates a reliability
layer by busy polling the completion bitmap. Upon reception of
all chunks, server sends an ACK to the client, which runs a tim-
ing loop. For each data point, we report average measurements
collected from at least 1000 repetitions of the benchmark.

1231

SC ’25, November 16–21, 2025, St Louis, MO, USA Khalilov et al.

See Figure 10 below

Figure 9: Erasure Coding (EC) improvements (speedup) over Selective Repeat (SR) simulated at 400 Gbit/s and 25 ms RTT.

RTO is exposed
Receiver

recovers with
parity

+ 2 RTOs

+ 1 RTO

(a) (b) (c) (d)

Figure 10: Subplots left to right: (a) variable sized Writes at 𝑃𝑑𝑟𝑜𝑝 = 10−5; (b), (c), (d) 128 MiB Write at various drop rates.

Parity becomes
ineffective

Figure 11: Comparison of MDS EC versus XOR EC. Encoding
performance is evaluated on 4 Ghz Intel Xeon Platinum 8580
with 128 MiB buffer, 64 KiB chunk size, 𝑘 = 32,𝑚 = 8.

RTT impact increases

𝑇!"# dominates

Figure 12: Impact of inter-DC distance and bandwidth on 128
MiBWrite completion time. Algorithm times are normalized
by a time to performWrite assuming lossless channel.

We evaluate SDR’s throughput scaling in Figure 14. In typical
distributed training workloads, message sizes are often hundreds of
megabytes [24, 51]. SDR can saturate the link’s line rate with much
smaller sizes, at the 512 KiB message size SDR needs just 1/16 of

P
er

-s
ta

ge
 m

sg

si
ze

 d
ec

re
as

es

Figure 13: 99.9th percentile completion time speedup for
inter-datacenter ring Allreduce with MDS EC over SR RTO
reliability. Left: 128 MiB buffer size. Right: 4 datacenters.

Receive repost
overheead

Figure 14: SDR throughput with 16 in-flight Writes and
64 KiB bitmap chunk. Left: throughput scaling at 16 DPA
receive threads. Right: Thread scaling for 16 MiB messages.

available DPA thread budget to sustain reception at 400G. However,
for messages smaller than 512 KiB, SDR throughput is behind RC
Writes due to software overhead from reposting receive buffers.

1232

SDR-RDMA: Software-Defined Reliability Architecture for Planetary Scale RDMA Communication SC ’25, November 16–21, 2025, St Louis, MO, USA

1 2 4 8 16 32 64
Bitmap chunk size [MTUs]

10

15

20

25

Av
g.

 p
ac

ke
t r

at
e

 [M
illi

on
s p

kt
s/

s]

15.0
17.0

19.0
21.0

23.0 24.0 24.5

1.0e-05 2.0e-05 4.0e-05 8.0e-05 1.6e-04 3.2e-04 6.4e-04

Figure 15: Impact of SDR bitmap chunk size on through-
put (shown above bars) and theoretical chunk drop proba-
bility 𝑃𝑐ℎ𝑢𝑛𝑘

𝑑𝑟𝑜𝑝
(shown at the bottom of bars) assuming packet

(MTU) drop probability 𝑃𝑑𝑟𝑜𝑝 = 1𝑒 − 5.

4 8 16 32 64 128
Number of receive DPA threads

0

50

100

Av
er

ag
e

pa
ck

et
 ra

te
 [M

illi
on

s p
kt

s/
s]

5.8 11.6
22.9

42.9

70.5
92.1

400 Gbit/s (12 Mp/s)
800 Gbit/s (24 Mp/s)
1600 Gbit/s (49 Mp/s)

3200 Gbit/s (98 Mp/s)

Figure 16: SDR packet rate scaling versus the number of DPA
threads used for receive side offloading.

Each new receive requires message slot reallocation, including
memory key table update and bitmap cleanup.

5.4.2 Impact of the SDR bitmap chunk size. The SDR bitmap’s
variable chunk size lets the reliability layer control how finely it
detects network drops. Larger chunks increase the chance of a
chunk drop being observed-since a single packet loss causes the
entire chunk to be marked as lost: 𝑃chunkdrop = 1− (1−𝑃drop)𝑁 , where
𝑁 is the number of packets in the chunk in Figure 15. At the same
time, larger chunks also reduce PCIe traffic to the host, as DPA
workers update the bitmap only once every 𝑁 packets.

Interestingly, we observed that 16 receive threads from the best
configuration in Figure 14 are enough to deliver line rate both at
minimum 1-packet chunk of 4096 KiB and maximum 64-packet
chunk of 256 KiB. In Figure 15 we show further investigation of
this phenomena with transport Write size reduced to 64 bytes and
bitmap chunk size scaled correspondingly. Reducing chunk size
allows us to saturate the link with more packets, while keeping
the DPA worker’s per-packet load constant, because DPA workers
process packet Write completions (not payload!) and their cycle
footprint is independent of packet size.We observe that in the worst-
case configuration of 1-packet chunks, 16 DPA threads can sustain
up to 15 million packets per second, while the theoretical packet
rate of 400 Gbit/s link at 4 KiB MTU is 11.6 million. This experiment
shows that SDR API offloading enables control of the drop rate at
the upper reliability layer without compromising performance.

5.4.3 SDR performance with Tbit/s links. Finally, in Figure 16 we
examine SDR’s ability to serve traffic at packet rates expected with
next-generation Tbit/s link bandwidths at 4 KiB MTUs and 64 KiB
chunks. To maximize packet rate load at the receiver, we use the
methodology from the previous example and use 4 CPU threads to
generate 64 byte packets on the client side. DPA-based offloading
scales nearly linearly across 4 to 32 threads. At 32 threads (1/8 of

DPA capacity), SDR reaches packet rates near 1.6 Tbit/s. Scaling to
128 threads brings throughput close to 3.2 Tbit/s. This demonstrates
that SDR’s multi-channel backend, combined with DPA offloading,
decouples per-packet progress from upper-layer reliability and
ensures scalability for next-generation links.

6 Related Work
IRN [29] and SRNIC [46] address design limitations of commod-
ity RDMA NICs. Like SDR, they use per-connection bitmaps for
retransmission-based reliability; however, these bitmaps are inter-
nal to the FPGA and hidden from users, limiting experimentation
with alternative schemes and compatibility with commodity NICs.
Their wire protocols are also incompatible with commodity NICs.

Flor [23] enhances Go-back-N reliability in ConnectX-4/5 RC
transport by supporting selective retransmission an top of UC. Un-
like SDR’s partial message completion, it lacks a unified abstraction
for general transport-layer reliability and does not support offload-
ing. Khalilov et al. [21] use a software bitmap for multicast-based
collectives. Their offload-oriented design also supports UC but does
not generalize to arbitrary traffic, unlike SDR.

Two decades ago, Lundqvist and Karlsson [26] showed that end-
to-end FEC can significantly boost TCP Reno, SACK, and Tahoe
throughput for Internet traffic. Maelstrom [4] introduces a proxy-
based design that applies FEC to UDP traffic at the datacenter edge.

More recent works, Cloudburst [50] and LoWAR [53] apply FEC
to the datacenter transport layer. Cloudburst distributes coded pack-
ets across parallel paths for early recovery, while LoWAR targets
long-haul links. Both outperform retransmission protocols but lack
scalability analysis for next-generation links, limit users to FEC-
based reliability and work on top of custom transport.

7 Conclusion
We presented SDR, a novel software-defined RDMA stack that en-
ables custom reliability algorithms for long-haul RDMA across dat-
acenters. SDR introduces partial message completion via a bitmap
API, empowering developers to tailor reliability strategies, such
as Selective Repeat and Erasure Coding, to specific network con-
ditions without sacrificing RDMA’s zero-copy performance. By
offloading packet-processing logic to the NIC, SDR achieves full
line rate performance on current generation hardware and supports
packet rates of next-generation Tbit/s links. SDR offers immediate,
deployable improvements over existing NIC solutions, unlocking
optimized inter-datacenter GPU training communication.

Acknowledgments
We thank CSCS and Jérôme Tissières for providing the infrastruc-
ture used to perform some of the experiments. This work is sup-
ported by the following grant agreements: SwissTwins (funded by
the swiss State Secreteriat for Education, Research and Innnova-
tion), ERC PSAP (grant agreement No 101002047), WeatherGenera-
tor (grant agreement No 101187947). The authors used ChatGPT
and Perplexity for minor editing and proofreading during the prepa-
ration of the manuscript. All ideas and content are exclusively the
original work of the authors.

1233

SC ’25, November 16–21, 2025, St Louis, MO, USA Khalilov et al.

References
[1] Albert Alexandrov, Mihai F Ionescu, Klaus E Schauser, and Chris Scheiman.

1995. LogGP: Incorporating long messages into the LogP model—one step closer
towards a realistic model for parallel computation. In Proceedings of the seventh
annual ACM symposium on Parallel algorithms and architectures. 95–105.

[2] OpenFabrics Alliance. 2025. Open Fabrics Enterprise Distribution (OFED) Perfor-
mance Tests. https://github.com/linux-rdma/perftest.

[3] Wei An, Xiao Bi, Guanting Chen, Shanhuang Chen, Chengqi Deng, Honghui
Ding, Kai Dong, Qiushi Du, Wenjun Gao, Kang Guan, et al. 2024. Fire-Flyer
AI-HPC: A Cost-Effective Software-Hardware Co-Design for Deep Learning.
In SC24: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–23.

[4] Mahesh Balakrishnan, Tudor Marian, Ken Birman, Hakim Weatherspoon, and
Einar Vollset. 2008. Maelstrom: Transparent Error Correction for Lambda Net-
works.. In NSDI. 263–278.

[5] AdamBelay, George Prekas, Ana Klimovic, Samuel Grossman, Christos Kozyrakis,
and Edouard Bugnion. 2014. IX: a protected dataplane operating system for high
throughput and low latency. In 11th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 14). 49–65.

[6] Tal Ben-Nun and Torsten Hoefler. 2019. Demystifying parallel and distributed
deep learning: An in-depth concurrency analysis. ACM Computing Surveys
(CSUR) 52, 4 (2019), 1–43.

[7] Dimitri Bertsekas and Robert Gallager. 2021. Data networks. Athena Scientific.
[8] Xuzheng Chen, Jie Zhang, Ting Fu, Yifan Shen, Shu Ma, Kun Qian, Lingjun Zhu,

Chao Shi, Yin Zhang, Ming Liu, et al. 2024. Demystifying datapath accelerator
enhanced off-path smartnic. In 2024 IEEE 32nd International Conference on Network
Protocols (ICNP). IEEE, 1–12.

[9] Marcin Chrapek, Mikhail Khalilov, and Torsten Hoefler. 2023. HEAR: Homomor-
phically Encrypted Allreduce. In Proceedings of the International Conference for
High Performance Computing, Networking, Storage and Analysis. 1–17.

[10] João da Silva. 2024. Google turns to nuclear to power AI data centres. BBC News
(15 October 2024). https://www.bbc.com/news/articles/c748gn94k95o Business.

[11] Daniele De Sensi, Salvatore Di Girolamo, Kim H McMahon, Duncan Roweth,
and Torsten Hoefler. 2020. An in-depth analysis of the slingshot interconnect.
In SC20: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE, 1–14.

[12] Jeffrey Dean and Luiz André Barroso. 2013. The tail at scale. Commun. ACM 56,
2 (2013), 74–80.

[13] Haotian Dong, Jingyan Jiang, Rongwei Lu, Jiajun Luo, Jiajun Song, Bowen Li, Ying
Shen, and ZhiWang. 2025. Beyond A Single AI Cluster: A Survey of Decentralized
LLM Training. arXiv preprint arXiv:2503.11023 (2025).

[14] Adithya Gangidi, Rui Miao, Shengbao Zheng, Sai Jayesh Bondu, Guilherme Goes,
Hany Morsy, Rohit Puri, Mohammad Riftadi, Ashmitha Jeevaraj Shetty, Jingyi
Yang, et al. 2024. Rdma over ethernet for distributed training at meta scale. In
Proceedings of the ACM SIGCOMM 2024 Conference. 57–70.

[15] Manjunath GorentlaVenkata, Valentine Petrov, Sergey Lebedev, Devendar Bu-
reddy, Ferrol Aderholdt, Joshua Ladd, Gil Bloch, Mike Dubman, and Gilad Shainer.
2025. Unified Collective Communication (UCC): A Unified Library for CPU, GPU,
and DPU Collectives. IEEE Micro (2025).

[16] Torsten Hoefler, Salvatore Di Girolamo, Konstantin Taranov, Ryan E Grant, and
Ron Brightwell. 2017. sPIN: High-performance streaming Processing in the
Network. In Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis. 1–16.

[17] Torsten Hoefler, Duncan Roweth, Keith Underwood, Robert Alverson, Mark
Griswold, Vahid Tabatabaee, Mohan Kalkunte, Surendra Anubolu, Siyuan Shen,
Moray McLaren, et al. 2023. Data center ethernet and remote direct memory
access: Issues at hyperscale. Computer 56, 7 (2023), 67–77.

[18] C. Hopps. 2009. Analysis of an Equal-Cost Multi-Path Algorithm. RFC 2992.
https://www.ietf.org/rfc/rfc2992.txt

[19] InfiniBand Trade Association. 2024. InfiniBand Specification. https://www.
infinibandta.org.

[20] Intel. 2025. Intel Intelligent Storage Acceleration Library. https://www.intel.com/
content/www/us/en/developer/tools/isa-l/overview.html.

[21] Mikhail Khalilov, Salvatore Di Girolamo, Marcin Chrapek, Rami Nudelman, Gil
Bloch, and Torsten Hoefler. 2024. Network-Offloaded Bandwidth-Optimal Broad-
cast and Allgather for Distributed AI. In SC24: International Conference for High
Performance Computing, Networking, Storage and Analysis. IEEE, 1–17.

[22] Adam Langley, Alistair Riddoch, Alyssa Wilk, Antonio Vicente, Charles Krasic,
Dan Zhang, Fan Yang, Fedor Kouranov, Ian Swett, Janardhan Iyengar, et al. 2017.
The quic transport protocol: Design and internet-scale deployment. In Proceedings
of the conference of the ACM special interest group on data communication. 183–
196.

[23] Qiang Li, Yixiao Gao, Xiaoliang Wang, Haonan Qiu, Yanfang Le, Derui Liu, Qiao
Xiang, Fei Feng, Peng Zhang, Bo Li, et al. 2023. Flor: An open high performance
RDMA framework over heterogeneous NICs. In 17th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 23). 931–948.

[24] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704 (2020).

[25] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng Cheng, Jian-
song Zhang, Enhong Chen, and Thomas Moscibroda. 2018. Multi-Path transport
for RDMA in datacenters. In 15th USENIX symposium on networked systems design
and implementation (NSDI 18). 357–371.

[26] Henrik Lundqvist and Gunnar Karlsson. 2004. TCP with end-to-end FEC. In
International Zurich Seminar on Communications, 2004. IEEE, 152–155.

[27] Michael Marty, Marc de Kruijf, Jacob Adriaens, Christopher Alfeld, Sean Bauer,
Carlo Contavalli, Michael Dalton, Nandita Dukkipati, William C Evans, Steve
Gribble, et al. 2019. Snap: A microkernel approach to host networking. In Pro-
ceedings of the 27th ACM Symposium on Operating Systems Principles. 399–413.

[28] Matt Mathis, Jamshid Mahdavi, Sally Floyd, and Allyn Romanow. 1996. RFC2018:
TCP selective acknowledgement options.

[29] Radhika Mittal, Alexander Shpiner, Aurojit Panda, Eitan Zahavi, Arvind Krishna-
murthy, Sylvia Ratnasamy, and Scott Shenker. 2018. Revisiting network support
for RDMA. In Proceedings of the 2018 Conference of the ACM Special Interest Group
on Data Communication. 313–326.

[30] Andrew Moseman. 2024. Amazon Vies for Nuclear-Powered Data Center: The
deal has become a flash point over energy fairness. IEEE Spectrum (12 August
2024). https://spectrum.ieee.org/amazon-data-center-nuclear-power

[31] NVIDIA. 2023. NVIDIA BlueField-3 Datasheet. https://resources.nvidia.com/en-
us-accelerated-networking-resource-library/datasheet-nvidia-bluefield.

[32] NVIDIA. 2023. Spectrum-X Datasheet. https://resources.nvidia.com/en-us-
networking-ai/networking-ethernet-1.

[33] NVIDIA. 2025. ConnectX-8 SuperNICDatasheet. https://resources.nvidia.com/en-
us-accelerated-networking-resource-library/connectx-datasheet-c.

[34] NVIDIA. 2025. DPA Subsystem. https://docs.nvidia.com/doca/sdk/DPA+
Subsystem/index.html.

[35] NVIDIA. 2025. NVIDIA Collective Communications Library (NCCL). https:
//developer.nvidia.com/nccl.

[36] OpenFabrics Alliance. 2025. Libfabric OpenFabrics. https://ofiwg.github.io/
libfabric/.

[37] David A Patterson, Garth Gibson, and Randy H Katz. 1988. A case for redundant
arrays of inexpensive disks (RAID). In Proceedings of the 1988 ACM SIGMOD
international conference on Management of data. 109–116.

[38] Peter Sanders, Jochen Speck, and Jesper Larsson Träff. 2009. Two-tree algorithms
for full bandwidth broadcast, reduction and scan. Parallel Comput. 35, 12 (2009),
581–594.

[39] Pasi Sarolahti, Markku Kojo, and Kimmo Raatikainen. 2003. F-RTO: an enhanced
recovery algorithm for TCP retransmission timeouts. ACM SIGCOMM Computer
Communication Review 33, 2 (2003), 51–63.

[40] SemiAnalysis. 2024. Multi-Datacenter Training: OpenAI’s Ambitious Plan To Beat
Google’s Infrastructure. https://semianalysis.com/2024/09/04/multi-datacenter-
training-openais/.

[41] Foteini Strati, Paul Elvinger, Tolga Kerimoglu, and Ana Klimovic. 2024. ML
training with Cloud GPU shortages: Is cross-region the answer?. In Proceedings
of the 4th Workshop on Machine Learning and Systems. 107–116.

[42] Sayantan Sur, Hyun-Wook Jin, Lei Chai, and Dhabaleswar K Panda. 2006. RDMA
read based rendezvous protocol for MPI over InfiniBand: design alternatives and
benefits. In Proceedings of the eleventh ACM SIGPLAN symposium on Principles
and practice of parallel programming. 32–39.

[43] Gemini Team, Rohan Anil, Sebastian Borgeaud, Jean-Baptiste Alayrac, Jiahui
Yu, Radu Soricut, Johan Schalkwyk, Andrew M Dai, Anja Hauth, Katie Millican,
et al. 2023. Gemini: a family of highly capable multimodal models. arXiv preprint
arXiv:2312.11805 (2023).

[44] Rajeev Thakur and William D Gropp. 2003. Improving the performance of
collective operations in MPICH. In European Parallel Virtual Machine/Message
Passing Interface Users’ Group Meeting. Springer, 257–267.

[45] Hao Wang, Sreeram Potluri, Devendar Bureddy, Carlos Rosales, and Dha-
baleswar K Panda. 2013. GPU-aware MPI on RDMA-enabled clusters: Design,
implementation and evaluation. IEEE Transactions on Parallel and Distributed
Systems 25, 10 (2013), 2595–2605.

[46] Zilong Wang, Layong Luo, Qingsong Ning, Chaoliang Zeng, Wenxue Li, Xinchen
Wan, Peng Xie, Tao Feng, Ke Cheng, Xiongfei Geng, et al. 2023. SRNIC: A scalable
architecture for RDMA NICs. In 20th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 23). 1–14.

[47] Stephen B Wicker and Vijay K Bhargava. 1999. Reed-Solomon codes and their
applications. John Wiley & Sons.

[48] Linda Winkler. 2015. SCinet: 25 years of extreme networking. In Proceedings of
the Second Workshop on Innovating the Network for Data-Intensive Science. 1–9.

[49] Behrooz Zahiri. 2003. Structured ASICs: opportunities and challenges. In Pro-
ceedings 21st International Conference on Computer Design. IEEE, 404–409.

[50] Gaoxiong Zeng, Li Chen, Bairen Yi, and Kai Chen. 2022. Cutting tail latency in
commodity datacenters with cloudburst. In IEEE INFOCOM 2022-IEEE Conference
on Computer Communications. IEEE, 600–609.

1234

https://github.com/linux-rdma/perftest
https://www.bbc.com/news/articles/c748gn94k95o
https://www.ietf.org/rfc/rfc2992.txt
https://www.infinibandta.org
https://www.infinibandta.org
https://www.intel.com/content/www/us/en/developer/tools/isa-l/overview.html
https://www.intel.com/content/www/us/en/developer/tools/isa-l/overview.html
https://spectrum.ieee.org/amazon-data-center-nuclear-power
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/datasheet-nvidia-bluefield
https://resources.nvidia.com/en-us-networking-ai/networking-ethernet-1
https://resources.nvidia.com/en-us-networking-ai/networking-ethernet-1
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/connectx-datasheet-c
https://resources.nvidia.com/en-us-accelerated-networking-resource-library/connectx-datasheet-c
https://docs.nvidia.com/doca/sdk/DPA+Subsystem/index.html
https://docs.nvidia.com/doca/sdk/DPA+Subsystem/index.html
https://developer.nvidia.com/nccl
https://developer.nvidia.com/nccl
https://ofiwg.github.io/libfabric/
https://ofiwg.github.io/libfabric/
https://semianalysis.com/2024/09/04/multi-datacenter-training-openais/
https://semianalysis.com/2024/09/04/multi-datacenter-training-openais/

SDR-RDMA: Software-Defined Reliability Architecture for Planetary Scale RDMA Communication SC ’25, November 16–21, 2025, St Louis, MO, USA

[51] Yanli Zhao, Andrew Gu, Rohan Varma, Liang Luo, Chien-Chin Huang, Min Xu,
Less Wright, Hamid Shojanazeri, Myle Ott, Sam Shleifer, et al. 2023. Pytorch fsdp:
experiences on scaling fully sharded data parallel. arXiv preprint arXiv:2304.11277
(2023).

[52] Danyang Zhuo, Monia Ghobadi, Ratul Mahajan, Klaus-Tycho Förster, Arvind
Krishnamurthy, and Thomas Anderson. 2017. Understanding and mitigating
packet corruption in data center networks. In Proceedings of the Conference of the
ACM Special Interest Group on Data Communication. 362–375.

[53] Tianyu Zuo, Tao Sun, Shuyong Zhu, Wenxiao Li, Lu Lu, Zongpeng Du, and Yujun
Zhang. 2024. LoWAR: Enhancing RDMA over Lossy WANs with Transparent
Error Correction. In 2024 IEEE/ACM 32nd International Symposium on Quality of
Service (IWQoS). IEEE, 1–10.

1235

SC ’25, November 16–21, 2025, St Louis, MO, USA Khalilov et al.

Appendix: Artifact Description/Artifact Evaluation
Artifact Description (AD)

A Overview of Contributions and Artifacts
A.1 Paper’s Main Contributions
C1 Analysis of inter-datacenter communication challenges.
C2 SDR-RDMA architecture that decouples application-specific

reliability logic from low-level packet processing.
C3 SDR-RDMA data path offloading for full line-rate performance

on current and next-generation commodity NICs.
C4 Framework to simulate and analyze the performance of SDR-

based reliability algorithms in an inter-datacenter setup.

A.2 Computational Artifacts
Artifact DOI: https://doi.org/10.5281/zenodo.16760233
Artifact Git Repo: https://github.com/spcl/sdr-rdma-artifact

Artifact ID Contributions Related
Supported Paper Elements

𝐴1 𝐶1, 𝐶4 Figures 3, 9-12

𝐴2 𝐶2, 𝐶3 Table 1
Figures 1, 4-7, 8, 14-16

𝐴3 𝐶1, 𝐶4 Figures 2, 3, 9-12

𝐴4 𝐶3 Figure 11

B Artifact Identification
B.1 Computational Artifact 𝐴1

Relation To Contributions
This artifact (folder "sdr-model") is a simulation framework for
SDR-based reliability algorithms. Simulation core is implemented
as a Python 3 module. It also includes a Python 3 notebook that
allows parameterizing the simulation and generating plots.

Expected Results
It provides simulated evidence of scenarios where SR outperforms
EC and vice versa. The default number of iterations is reduced
in comparison to experiments in the paper to ensure fast artifact
reproducibility. This doesn’t affect key experimental takeaways.

Expected Reproduction Time (in Minutes)
The expected time to run the simulation artifact on a system with
an Mac M1 ARM CPU is 10 min.

Artifact Setup (incl. Inputs)
Hardware. Personal computer.

Software. Required software to run simulation:
• Python v3.13.5
• Jupyter Notebook (Conda v24.9.2).
• Matplotlib v3.10.0
• tqdm v4.67.1
• numpy 2.2.2

Datasets / Inputs.

• "sdr-model/fct_model.ipynb" notebook contains simulations
related to point-to-point results.

• "sdr-model/ar_model.ipynb" notebook contains simulations
related to the Allreduce.

Installation and Deployment. To run the simulation model, Python
dependencies listed above must be installed on the system (one
can use "sdr-model/requirements.txt" to automate dependencies
installation).

Artifact Execution
All cells of both notebooks must be executed.

B.2 Computational Artifact 𝐴2

Relation To Contributions
This artifact ("sdr-api" folder) is an open-sourced SDR SDK API
header file with an SDR perftest benchmark implemented on top
of it. The SDR perftest benchmark reports client-server throughput
for a given message size, bitmap chunk size, and number of threads
in the SDR backend. SDR perftest can be compiled and executed
against a library that implements the SDR API.

Expected Results
Assuming that the SDR API implementation leverages DPA of-
floading, similarly to our implementation, a 400 Gbit/s line rate
can be reached with SDR DPA-based offloading using 4 TX and 16
RX threads. 128 DPA threads achieve over 90 million packets per
second.

Expected Reproduction Time (in Minutes)
The expected computational time to run the benchmark artifact on
a two-node system with DPA offloading is 30 min.

Artifact Setup (incl. Inputs)
Hardware. Experiments involving the DPA acceleration are per-
formed using two servers connected to each other through Spec-
trumX switch with BlueField-3 400 Gbit/s DPUs installed on both
servers.

Software. DOCA SDK v2.9.0.

Inputs. We open-source the SDR perftest benchmark code used to
collect performance of proprietary closed-source SDR SDK across
different message sizes, thread counts, etc.

Installation and Deployment. The benchmark code and SDR API
header files can be found in the artifact repo: https://github.com/spcl/sdr-
rdma-artifact.

Artifact Execution
Assuming that the SDR API header was implemented and bench-
mark was compiled against it, to run the benchmark, a server should
start the benchmark in listening mode, and a client should run the
client-side benchmark by specifying the server IP address.

1236

SDR-RDMA: Software-Defined Reliability Architecture for Planetary Scale RDMA Communication SC ’25, November 16–21, 2025, St Louis, MO, USA

B.3 Computational Artifact 𝐴3

Relation To Contributions
This artifact ("iperf" folder) is a set of wrapper scripts around iperf3
to collect the UDP drop rate.

Expected Results
Depending on the network under consideration, the benchmarkwill
report the UDP drop rate. For example, on a non-isolated network
under switch buffer load, the observed drop rate could be high (e.g.,
above 10−4).

Expected Reproduction Time (in Minutes)
The expected computational time to run a single sample is ≈ 15 sec-
onds.

Artifact Setup (incl. Inputs)
Hardware. Two nodes connected through a network that supports
UDP protocol communication.

Software.

• iperf-3.19
• Python 3.13.5.

Datasets / Inputs. The "./batch_experiments.sh" script contains all
test-case scenarios (different MTUs) discussed in the paper.

Installation and Deployment. The script used to run the experimen-
tal batch ("./batch_experiments.sh") must be parameterized with
client and server details, e.g., IP addresses of the data path and
control path interfaces.

Artifact Execution
The following command will run 10 experiments of 30 seconds each
with a sleep of 2 seconds between each experiment:

"./batch_experiments.sh server-MGMT-IP server-NIC-IP ./logs-
many-trials/ 30 10"

B.4 Computational Artifact 𝐴4

Relation To Contributions
This artifact ("ec-perf" repo submodule) is a benchmark of various
erasure coding schemes. It includes a benchmarking front-end for
open-source libraries (e.g., Intel ISA-L supporting MDS-based era-
sure coding), and a custom implementation of XOR-based erasure
coding.

Expected Results
On a modern HPC-grade CPU with AVX512 support, 4–8 threads
should be sufficient to reach 400 Gbit/s encryption speed for a 128
MiB buffer.

Expected Reproduction Time (in Minutes)
The expected computational time to run the benchmark comparing
ISA-L library to the custom XOR implementation is 10 minutes.

Artifact Setup (incl. Inputs)
Hardware. A server with a multi-core CPU.

Software. GCC v13.3.0 compiler and OpenMP runtime (libgomp of
GCC).

Datasets / Inputs. All test cases are contained within the bench-
marking package.

Installation and Deployment. Project repository provides all instruc-
tions to run the deploy and run benchmark.

Artifact Evaluation (AE)

C.1 Computational Artifact 𝐴1
The artifact evaluation part provides steps to reproduce the results
obtained with the artifact 𝐴1 of the reliability layer presented in
the paper (Figures 3, 9-12).

Artifact Setup (incl. Inputs)
Initial setup includes executing the command:
"pip install -r sdr-model/requirements.txt".

Artifact Execution
(1) To reproduce the results, the user needs to execute all cells of

the two Jupyter notebooks inside the "sdr-model" folder (e.g.,
both notebooks can be executed by pressing the "Run All"
button in the Notebook interface of VS Code or the Jupyter
browser frontend).

(2) Both notebooks use network parameters similar to those de-
scribed in the paper. Tomodify these parameters, the user can
edit the variables defined in "sdr-model/network-params.py".

Artifact Analysis (incl. Outputs)
• Resulting plots of the experimental outcomes will be stored
in the "sdr-model/plots/" directory.

• Output plots should show trends similar to those presented
in the paper. However, as described in the AD section.

• Slight variations in figures are possible due to the reduced
number of iterations in the artifact and stochastic nature of
experiments.

C.2 Computational Artifact 𝐴2, 𝐴3, 𝐴4
The detailed instructions of how to setup, execute, and analyze the
provided artifacts 2-4 is included in the subsections of the artifact
description part above.

1237

SC ’25, November 16–21, 2025, St Louis, MO, USA Khalilov et al.

Reproducibility Report

D Overview of Reproduction of Artifacts
The following table provides an overview of each computational
artifact’s reproducibility status. Artifact IDs correspond to those in
the AD/AE Appendices.

Artifact ID Available Functional Reproduced

𝐴1 • • •
𝐴2 • ◦ ◦
𝐴3 • ◦ ◦
𝐴4 • ◦ ◦

Badge awarded yes yes yes

E Reproduction of Computational Artifacts
E.1 Timeline
The experiments conducted for artifact evaluation were performed
from 4-6 August 2025.

E.2 Computational Environment and Resources
The experiments conducted for artifact evaluation were performed
on a Dell Precision 5480 with a 13th Gen Intel(R) Core(TM) i9-
13900H, 2600 Mhz, with 14 cores and 20 logical processors. Note
that only pertains to artifact 𝐴1, as none of the other artifacts were
able to be properly configured, built, and installed using the di-
rection provided (or those available in a linked repository). The
installation of artifacts 𝐴3 and 𝐴4 was attempted on the CPU parti-
tion of Permutter at NERSC, whose nodes have 2 AMD EPYC 7763
CPUs and are connected with a HPE Slingshot 11 interconnect. The
installation of 𝐴2 was not attempted due to both a lack of access to
the required hardware and the absence of any build instruction or
system for the textttsdr-api directory.

E.3 Details on Artifact Reproduction
(1) Artifact 𝐴1: We first note that this is the only artifact men-

tioned in the AE appendix. Following the instructions in that
appendix was sufficient to install dependencies and run the
scripts for this artifact. The generated plots are shown in
Fig 17, 18, 19, 20, and 21. In all cases, the generated figures
match their counterparts in the original paper well.

(2) Artifact 𝐴2: No instructions are provided for building the
code found in the adr-api directory, either in the AD ap-
pendix or in the readme file present in the directory. Ad-
ditionally, there is no build system (Makefile, CMakeLists,
etc) present from which instructions could be inferred, nor
does the naive approach of simply running a C compiler
on sdr_write_bw.c work (in our case this compiler was
gcc [Ubuntu 11.4.0-1ubuntu1 22.04] 11.4.0) due to a missing
header file, namely
#include <contrib/lwlog.h>. As we were unable to in-
stall the DOCA SDK on this device due to a lack of hardware
support, we suspect this is the root cause of the error, but
were unable to confirm this.

12
8 K

iB
32

 MiB
8 G

iB
2 T

iB

Write size [Bytes]

1.0

1.5

2.0

2.5

M
ea

n
Sl

ow
do

wn

75
15

00
30

00
45

00
60

00

One-way distance
 [km]

1.0

1.2

1.4

1.6

M
ea

n
Sl

ow
do

wn

10 610 410 2

Pdrop

1

5

10

14

M
ea

n
Sl

ow
do

wn

+1 RTO
+2 RTO
+3 RTO

MDS EC(32,8) SR RTO(3 RTT)

Figure 17: Corresponds to Figure 3 in the original paper.

(3) Artifact 𝐴3: We were able to install iperf3 successfully, but
unable to run batch_experiments.sh due to a lack of in-
structions on how to properly configure the two nodes and
collect the input parameters necessary to run this script.

(4) Artifact 𝐴4: We attempted to follow the instructions for in-
stalling ec-perf and its dependencies found in the readme
of that repository, but they required root privileges on the
system which we do not have on Perlmutter (as is common
for many HPC users).

Overall, we decided to award all badges after discussing these
results with the paper reviewers. They find that 𝐴1 constitutes
a major component of the original paper, and consider Figure 9
in the original paper (Figure 18 here) to be especially important
to the paper’s conclusions. As a result, we consider our ability
to reproduce the results related to 𝐴1 sufficient to grant all three
requested badges.

That being said, this decision should not be construed as endors-
ing the results pertaining to the other three artifacts, which we
were not able to evaluate fully. Our inability to access the required
hardware were a major contributor to this result, though we note
that important details are missing from the instructions provided
for all remaining artifacts. These issues would likely have made
reproducing the achieved results difficult even with access to the
required hardware.

Disclaimer: This Reproducibility Report was crafted by volunteers with the goal
of enhancing reproducibility in our research domain. The time period allocated for the
reproducibility analysis was constrained by paper notification deadlines and camera-
ready submission dates. Furthermore, the compute hours in the shared infrastructure
(e.g., Chameleon Cloud) available to the authors of this report were limited and re-
stricted the scope and quantity of experiments in the review phase. Consequently, the
inability to reproduce certain artifacts within this evaluation should not be interpreted
as definitive evidence of their irreproducibility. Limitations in the time allocated to
this review and the compute resources available to the reviewers may have prevented
a positive outcome. Furthermore, reviewers assess the reproducibility of the artifacts
provided by the authors; however, they are not accountable for verifying that the
artifacts support the main claims of the paper.

1238

SDR-RDMA: Software-Defined Reliability Architecture for Planetary Scale RDMA Communication SC ’25, November 16–21, 2025, St Louis, MO, USA

10 9 10 7 10 5 10 3 10 1

Pdrop

217

220

223

226

229

232

235

W
rit

e
siz

e
[B

yt
es

]

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.4 1.9 0.9 0.9
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.6 2.2 0.8 0.9
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.3 1.9 2.3 0.8 0.9
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.6 2.0 2.6 0.8 0.9
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.5 2.0 2.2 3.0 0.8 0.9
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.3 1.8 2.0 2.3 3.1 0.8 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.5 1.9 2.0 2.5 3.1 0.9 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.5 1.9 1.9 2.1 2.9 2.7 0.9 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.7 1.9 1.9 2.1 2.8 2.2 0.9 1.0
1.0 1.0 1.0 1.0 1.0 1.1 1.4 1.7 1.7 1.8 2.1 2.7 1.7 0.9 1.0
0.9 0.9 0.9 0.9 1.0 1.1 1.4 1.6 1.6 1.6 2.1 2.4 1.4 0.9 1.0
0.9 0.9 0.9 0.9 1.0 1.1 1.2 1.2 1.2 1.3 1.5 1.7 1.1 0.8 0.9
0.8 0.8 0.8 0.9 0.9 1.0 1.0 1.0 1.0 1.1 1.2 1.4 1.0 0.8 0.9
0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.1 1.0 0.7 0.9
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.6 0.7

SR NACK over EC MDS(32,8)
Mean speedup

10 9 10 7 10 5 10 3 10 1

Pdrop

217

220

223

226

229

232

235

W
rit

e
siz

e
[B

yt
es

]
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 4.0 0.6
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 3.0 0.7 0.8
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 2.0 1.1 0.9
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 3.0 1.1 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 3.0 0.9 0.9
1.0 1.0 1.0 1.0 1.0 2.0 1.0 1.0 2.0 2.0 2.0 3.0 4.0 0.9 0.9
1.0 1.0 1.0 1.0 1.0 1.0 1.0 2.0 2.0 2.0 3.0 3.0 3.9 1.1 0.7
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.9 1.9 1.9 1.9 2.9 3.8 1.3 0.9
1.0 1.0 1.0 1.0 1.8 1.0 1.8 1.8 1.9 1.9 2.7 2.7 3.6 1.2 0.7
1.0 1.0 1.0 1.0 1.0 1.0 1.7 1.7 1.7 1.7 2.5 3.3 4.0 1.1 0.7
0.9 0.9 0.9 0.9 1.4 0.9 1.5 1.6 1.6 1.6 2.1 2.2 2.9 1.0 1.0
0.9 0.9 0.9 0.9 0.9 1.1 1.2 1.2 1.2 1.3 1.5 1.5 1.9 0.9 0.7
0.8 0.8 0.8 0.8 1.0 1.0 1.0 1.0 1.0 1.0 1.2 1.2 1.3 0.9 0.9
0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 1.0 1.1 1.1 0.9 0.7
0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.8 0.9 0.9 0.9 0.8 0.6

SR NACK over EC MDS(32,8)
99.9'th Percentile speedup

10 9 10 7 10 5 10 3 10 1

Pdrop

217

220

223

226

229

232

235

W
rit

e
siz

e
[B

yt
es

]

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.3 2.1 3.8 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.6 2.8 4.5 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.3 2.0 3.6 5.0 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.5 2.7 4.0 5.7 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.5 2.6 3.9 4.5 6.9 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.3 1.9 3.4 4.0 4.9 6.9 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.1 1.5 2.6 3.8 4.1 5.5 6.7 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.1 1.4 2.4 3.7 3.8 4.3 6.6 4.9 1.0 1.0
1.0 1.0 1.0 1.0 1.0 1.2 1.8 3.0 3.6 3.7 4.4 6.5 3.7 1.0 1.0
1.0 1.0 1.0 1.0 1.1 1.3 2.1 3.2 3.3 3.4 4.5 6.1 2.7 1.0 1.0
0.9 0.9 0.9 1.0 1.1 1.5 2.4 2.9 2.9 3.0 4.4 5.4 2.2 1.0 1.0
0.9 0.9 0.9 0.9 1.1 1.6 1.8 1.8 1.8 2.1 2.8 3.5 1.7 0.9 1.0
0.8 0.8 0.9 0.9 1.1 1.4 1.4 1.4 1.4 1.7 2.0 2.5 1.5 0.9 1.0
0.8 0.8 0.8 0.9 1.0 1.1 1.1 1.1 1.2 1.4 1.5 1.8 1.3 0.9 0.9
0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.0 1.1 1.0 0.7 0.8

SR RTO(3 RTT) over EC MDS(32,8)
Mean speedup

10 9 10 7 10 5 10 3 10 1

Pdrop

217

220

223

226

229

232

235

W
rit

e
siz

e
[B

yt
es

]

1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 4.010.01.2
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 4.0 7.0 1.8 0.9
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 1.0 4.0 7.0 1.2 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 4.0 7.0 1.1 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 4.0 4.0 6.9 7.0 1.5 0.8
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 4.0 4.0 4.0 4.0 6.9 1.1 1.0
1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 3.9 3.9 3.9 6.9 9.8 1.1 1.0
1.0 1.0 1.0 1.0 1.0 1.0 3.7 3.8 3.8 3.8 6.6 6.6 9.4 0.9 0.8
1.0 1.0 1.0 1.0 3.5 3.5 1.0 3.6 3.6 3.6 3.6 6.311.50.9 1.0
1.0 1.0 1.0 1.0 1.0 3.2 3.3 3.3 3.3 3.3 5.7 5.710.31.3 0.9
0.9 0.9 0.9 0.9 2.8 2.9 2.9 2.9 2.9 2.9 4.7 4.8 8.6 1.1 0.9
0.9 0.9 0.9 0.9 1.5 1.6 1.8 1.8 1.8 2.7 2.7 3.7 4.4 1.1 0.9
0.8 0.8 1.2 0.8 0.9 1.3 1.4 1.4 1.4 1.4 2.0 2.4 1.7 1.2 1.0
0.8 0.8 1.1 0.9 0.8 1.1 1.1 1.1 1.1 1.3 1.4 1.7 1.8 0.8 1.0
0.8 0.8 0.8 0.9 0.9 0.9 0.9 0.9 0.9 0.9 1.0 1.1 1.0 0.8 0.8

SR RTO(3 RTT) over EC MDS(32,8)
99.9'th Percentile speedup

Figure 18: Corresponds to Figure 9 in the original paper.

220 224 228 232

Write size [Bytes]

102

M
ea

n
W

rit
e

co
m

pl
et

io
n

tim
e

[m
s] EC MDS(32,8)

SR RTO(3 RTT)
Lossless
1/Pdrop
BDP

10 8 10 6 10 4 10 2 100

Pdrop

102

103

M
ea

n
W

rit
e

co
m

pl
et

io
n

tim
e

[m
s] EC XOR(32,8)

EC MDS(32,8)
SR RTO(3 RTT)
SR NACK

10 8 10 6 10 4 10 2 100

Pdrop

102

103

M
ea

n
W

rit
e

co
m

pl
et

io
n

tim
e

[m
s] SR NACK

SR RTO(2 RTT)
SR RTO(3 RTT)

10 8 10 6 10 4 10 2 100

Pdrop

0.00

0.25

0.50

0.75

1.00

PEC fa
llb

ac
k

EC MDS(2,1)
EC MDS(4,2)
EC MDS(8,4)
EC MDS(16,8)
EC MDS(16,4)
EC MDS(32,8)
EC MDS(32,4)

Figure 19: Corresponds to Figure 10 in the original paper.

75
0

22
50

37
50

52
50

67
50

82
50

97
50

11
25

0
12

75
0
14

25
0

Inter-DC distance [km]

1.0

1.5

2.0

No
rm

al
ize

d
 c

om
pl

et
io

n
tim

e

EC MDS(32,8)
SR RTO(3 RTT)
SR NACK

100 200 400 800 1600 3200
Inter-DC connection bandwidth

[Gbit/s]

1.0

1.5

2.0

2.5

No
rm

al
ize

d
co

m
pl

et
io

n
tim

e EC MDS(32,8)
SR RTO(3 RTT)
SR NACK

Figure 20: Corresponds to Figure 12 in the original paper.

10 8 10 6 10 4 10 2

Pdrop

2
3
4
5
6
7
8

da

ta
ce

nt
er

s

1.0 1.0 1.0 1.9 2.9 3.8 4.7 6.6 2.3 1.0

1.0 1.0 1.0 1.5 2.4 3.9 4.3 6.3 3.5 1.0

1.0 1.0 1.3 1.3 2.0 3.6 4.2 5.8 4.1 0.9

1.0 1.0 1.2 1.2 2.0 3.4 4.2 5.9 4.5 1.0

1.0 1.0 1.2 1.4 1.8 3.1 4.1 5.5 4.4 1.0

1.0 1.0 1.2 1.3 1.7 3.1 4.1 5.6 4.7 1.0

1.0 1.0 1.1 1.3 1.7 3.1 4.1 5.4 4.7 1.0

10 8 10 6 10 4 10 2

Pdrop

221

224

227

230

Al
lre

du
ce

 si
ze

 [B

yt
es

]

1.0 1.0 1.0 1.0 1.0 1.7 2.3 4.0 6.7 0.9

1.0 1.0 1.0 1.0 1.3 1.7 2.7 4.3 5.1 0.9

1.0 1.0 1.0 1.3 1.3 2.0 3.7 5.0 4.9 1.0

1.0 1.0 1.0 1.3 1.7 2.6 4.0 5.0 4.7 1.0

1.0 1.0 1.0 1.3 2.0 3.6 4.2 6.1 4.3 1.0

1.0 1.0 1.3 1.6 2.2 3.8 4.1 6.3 3.5 1.0

1.0 1.0 1.2 1.7 3.0 3.3 4.1 6.2 2.3 1.0

0.9 1.0 1.2 1.7 2.3 2.5 3.0 4.2 1.8 0.9

Figure 21: The sole plot produced by ar-model.ipynb. Corresponds to Figure 13 in the paper.

1239

	Abstract
	1 Motivation
	2 Challenges of inter-DC communication
	2.1 There is no ideal approach to reliability
	2.2 Need for a software-defined solution
	2.3 Transport design challenges

	3 SDR middleware
	3.1 Partial message completion API
	3.2 Messaging protocol
	3.3 Late packet arrival protection
	3.4 Backend acceleration

	4 Example reliability layers
	4.1 Protocols
	4.2 Message completion time model

	5 Evaluation
	5.1 Experimental setup
	5.2 Deploying SDR at cross-continent scale
	5.3 Inter-datacenter AI collectives
	5.4 End-to-end performance with BlueField-3

	6 Related Work
	7 Conclusion
	Acknowledgments
	References
	A Overview of Contributions and Artifacts
	A.1 Paper's Main Contributions
	A.2 Computational Artifacts

	B Artifact Identification
	B.1 Computational Artifact A1
	B.2 Computational Artifact A2
	B.3 Computational Artifact A3
	B.4 Computational Artifact A4
	C.1 Computational Artifact A1
	C.2 Computational Artifact A2, A3, A4

	D Overview of Reproduction of Artifacts
	E Reproduction of Computational Artifacts
	E.1 Timeline
	E.2 Computational Environment and Resources
	E.3 Details on Artifact Reproduction

