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Abstract

Cloud computing and AI workloads are driving unprecedented
demand for efficient communication within and across datacen-
ters. However, the coexistence of intra- and inter-datacenter traffic
within datacenters plus the disparity between the RTTs of intra-
and inter-datacenter networks complicates congestion manage-
ment and traffic routing. Particularly, faster congestion responses
of intra-datacenter traffic causes rate unfairness when competing
with slower inter-datacenter flows. Additionally, inter-datacenter
messages suffer from slow loss recovery and, thus, require reli-
ability. Existing solutions overlook these challenges and handle
inter- and intra-datacenter congestion with separate control loops
or at different granularities. We propose Uno, a unified system for
both inter- and intra-DC environments that integrates a transport
protocol for rapid congestion reaction and fair rate control with a
load balancing scheme that combines erasure coding and adaptive
routing. Our findings show that Uno significantly improves the
completion times of both inter- and intra-DC flows compared to
state-of-the-art methods such as Gemini.
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1 Introduction

With the drastic growth in cloud computing, HPC, and AI work-
loads, ensuring congestion-free communication and efficient traffic
routing both inside and across multiple datacenters (DCs) is becom-
ing more crucial than ever [25, 37, 55]. Specifically, reports from
Google highlight a 100X increase in their inter-DC WAN traffic vol-
ume during a five-year period [36]. Additionally, with the growth
of large-scale Al models, fitting entire training jobs inside a single
datacenter is becoming infeasible [48], e.g., Google’s Gemini was
trained on several Google supercomputers [29], and, more recently,
OpenAl used several clusters to train its GPT-4.5 model [54].
Many congestion control protocols have been developed through-
out the years to separately ensure efficient communication in intra-
DC [3,9, 11, 41, 43, 47, 51, 61, 62] and inter-DC [20, 35, 37, 40, 59]
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Figure 1: @ shows inter-DC links for Azure in Europe and their
delay assuming point-to-point connections. shows that inter-DC
links make even medium-large messages latency-bound.

environments, but very little research has been done on simul-
taneously handling both [63]. While inter- and intra-datacenter
traffic are usually treated as separate entities, they co-exist within
datacenters and compete over resources. Therefore, it is crucial
to ensure efficient communication for each entity while also con-
sidering the other entity [63]. However, doing so is challenging
due to the inherent differences between datacenter networks and
WANS. In particular, within a single datacenter, cable lengths and
propagation delays are small and, mostly, homogeneous. However,
inter-datacenter WANSs are built using long physical links with large
propagation delays [59, 63]. Additionally, inter-DC links traverse
different geographical paths thereby introducing heterogeneity in
link propagation delays and additional risks of failures.

Unlike datacenter networks, in inter-DC WANS, the completion
time of even large messages is bounded by latency rather than
throughput due to the large propagation delays. Particularly, in
a modern datacenter infrastructure, it might take at most tens of
microseconds for a packet to go from any given node to any desti-
nation, assuming a lightly-loaded network [23, 51]. On the other
hand, when going across datacenters, such delay increases dramati-
cally to multiple milliseconds, e.g., Figure 1 @ presents link delays
between Microsoft Azure’s datacenters across Europe. Figure 1
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presents the percentage of a message’s completion time, i.e., time
taken from sending the first packet of the message to receiving
the last ACK, that is due to the aggregate propagation delay across
distinct message sizes and intra- and inter-DC propagation delays
(indicated as RTTs). For typical intra-datacenter RTTs (i.e., 10us to
40pus [41, 51]), as we increase the message size, the completion time
quickly becomes dominated by the sending throughput for sizes
greater than 256 KiB. On the other hand, for inter-datacenter RTTs
(i.e., 1 ms to 60 ms [59, 63]), the completion time becomes mostly
bounded by the propagation delay. For instance, when the inter-DC
RTT is 20 ms, the completion time is dominated by propagation
delay if messages are smaller than 1 GiB, which is quite large (mes-
sage sizes recorded from Alibaba’s inter-DC traces are all smaller
than 300 MB [65]). Moreover, with increasing link bandwidths, this
will only become more extreme in the future. While this theoretical
study gives us some useful insights, we note that actual bounds
would slightly change depending on the network’s conditions.

This massive delay gap between intra-DC and inter-DC net-
works introduces several challenges for simultaneous and efficient
congestion management of both intra- and inter-DC traffic:

1) Diverse congestion feedback granularity: The congestion
feedback loop for inter-DC flows is significantly delayed compared to
intra-DC traffic. Consequently, upon receiving a congestion signal
for inter-DC traffic, it is hard to know if the path is still congested.
On top of that, the delay mismatch makes it hard to maintain
fairness between intra- and inter-DC flows while competing over a
bottleneck link.

2) BDP heterogeneity: Inter-DC Bandwidth Delay Product (BDP)
is significantly larger than intra-DC BDP due to its long RTTs, e.g.,
with 10 ms RTT and 400 Gbps link bandwidth, the inter-DC BDP
is ~ 500 MB. While commodity switch buffers have increased in
size during the years [13], they are still quite small, especially intra-
DC switch buffers, compared to inter-DC BDP. Meanwhile, many
congestion control algorithms [9, 61, 66] assume the capacity of
switches to be at least a fraction of BDP, e.g., 17% for DCTCP [9].
While this assumption holds for intra-datacenter flows, whose BDPs
are typically less than 1 MiB, it becomes unrealistic for inter-DC
flows. The lack of buffering space in switches is amplified as cloud
providers are using shallow-buffered commodity switches to be
cost-efficient and improve scalability [26, 37].

3) Inefficient loss handling: Packet loss and its consequent re-
transmission significantly increase the message completion time in
latency-bound WANs. Even with advanced loss detection mecha-
nisms such as packet trimming [33], the loss notification mechanism
takes a long time due to the large propagation delay. Therefore,
deploying efficient loss recovery mechanisms traffic is necessary.

While existing proposals, such as Gemini [63] and BBR [20], try
to tackle some of these challenges, to the best of our knowledge,
no proposals have addressed them all. Specifically, BBR is dedi-
cated only to WAN traffic and requires another transport, such as
DCTCP [9], to handle intra-DC traffic. With separate transports, it
is challenging to guarantee fairness. Gemini, on the other hand, is
a window-based congestion control for both intra- and inter-DC
communication that is proven to achieve bandwidth fairness among
intra- and inter-DC flows. However, as Gemini’s granularity for
reacting to intra-DC and inter-DC congestion signals significantly
varies, Gemini experiences slow convergence to fairness and is
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Vastly diverse RTTs and Most messages are latency
delayed feedback. bound.
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Figure 2: To ensure efficient communication within and across
datacenters, Uno integrates congestion control, load balancing, and
loss resiliency.

prone to network under-utilization (§2). Lastly, all these techniques
suffer from inefficient loss handling for WAN traffic. To resolve
these problems, we introduce Uno, a system that tightly integrates
congestion control, load balancing, and loss resiliency to create a
unified solution for both intra- and inter-DC communication. As
shown in Figure 2, Uno employs two key components:

1) Congestion Control component (UnoCC): When mes-
sages become throughput-bound and congestion control becomes
vital, UnoCC exploits Explicit Congestion Notification (ECN) to
efficiently handle congestion both inside and across datacenters
and simultaneously provide low latency and flow-level fairness for
intra-DC and inter-DC traffic. To ensure effective congestion man-
agement across datacenters, Uno uses phantom queues [10], i.e.,
virtual queues with arbitrary sizes that mimic the behavior of phys-
ical queues, to match the high BDPs of the inter-DC connections
regardless of the physical queue capacity.

2) Reliable Connectivity component (UnoRC): Since most
messages are latency-bound when traversing inter-DC WAN, Uno
augments message transmission with erasure coding [52] to increase
loss recovery without packet re-transmission for cross datacenter
communication. Furthermore, Uno integrates the erasure coding
logic with a sub-flow level load balancing (UnoLB) scheme that
leverages multi-pathing of modern networks.

We evaluate Uno using htsim simulations [33] and compare it
against MPRDMA+BBR ([47]+[20]) and Gemini [63]. Our results
show that Uno significantly improves latency, fairness, and loss
resiliency. For instance, under 60% load and a mixture of both inter-
and intra-DC workloads, Uno improves the 99th percentile FCT by
31% and 30% compared to BBR+MPRDMA and Gemini, respectively.

2 Coexistence among inter- and intra-DC traffic:
challenges and opportunities

This section outlines the challenges introduced by the inherent
heterogeneity between intra-DC and inter-DC propagation delays.

2.1 Diverse congestion feedback granularity

Typically, the workload inside a datacenter is comprised of both
intra-DC and inter-DC traffic. Meanwhile, there exists a huge gap
between the congestion feedback granularity of inter- and intra-DC
flows due to the significant difference between their propagation
delays [63]. For instance, considering intra-DC RTT of 10us [41, 51]
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and inter-DC RTT of 10ms [59, 63], every inter-DC RTT corre-
sponds to 1000 intra-DC RTTs. This means that intra-DC flows
potentially receive congestion signals 1000X more frequently than
inter-DC flows. Therefore, in cases of network congestion caused
by a mixture of inter- and intra-DC traffic, the intra-DC flows ad-
just their rates more frequently than inter-DC flows which can
potentially victimize intra-DC traffic and hurt flow-level fairness.
Furthermore, as shown in Figure 4 @ in §3, the large gap be-
tween the propagation delay of inter- and intra-DC traffic can
cause network under-utilization and queue occupancy oscillations
in steady state. Specifically, the congestion feedback for inter-DC
flows can be piggybacked to the senders long after the actual con-
gestion had been resolved by intra-DC flows adjusting their rates. In
such scenario, reducing the send rate of inter-DC flows upon receiv-
ing the congestion signals creates long periods of under-utilization
before the flows ramp up and fill the excess network capacity.

2.2 Heterogeneous hot spots

Commodity switches, especially those deployed in inter-datacenter
WAN, limit the signals used for congestion detection [63]. There-
fore, packet loss, delay, and Explicit Congestion Notification (ECN)
are commonly used to detect congestion both inside and between
datacenters [9, 41, 47, 51, 61, 63, 66]. Solely relying on packet loss
and packet re-transmission for detecting congestion and reacting
to it imposes significant extra latency as it is only triggered when
the switch buffers are extremely congested [9, 41, 61].

With ECN as the congestion signal, it is difficult to properly
set the ECN marking threshold when having mixed inter-DC and
intra-DC traffic [63]. This is because the buffer capacity of WAN
switches can be larger than that of the switches deployed inside
datacenters, as is the case in Gemini [63]. Additionally, inter-DC
Bandwidth Delay Products (BDPs) are usually much larger than
intra-DC BDPs. Therefore, inter-DC traffic requires much larger
ECN marking thresholds compared to traffic staying within the
datacenter. With delay as the congestion signal, it is challenging to
distinguish inter-datacenter hot spots from intra-datacenter. Specifi-
cally, it is non-trivial to know whether the increased delay indicates
extreme congestion in shallow-buffered intra-DC switches or mi-
nor congestion in deep-buffered inter-DC switches. Using shallow
buffers everywhere could help the delay signal but it would still
be a noisy signal due to the large inter-DC latency. Annulus [59]
introduces Quantized Congestion Notification (QCN) [7, 38] to de-
tect early congestion for inter-DC flows. However, it only helps if
the congestion happens near source before crossing the datacenter
boundary since it relies on sending an early warning on the reverse
path from the congestion hot spot to the source.

2.3 BDP heterogeneity

Most reactive congestion control protocols assume a minimum
amount of available buffer capacity for proper operation, e.g., DCTCP
[9] requires the buffer space to be at least 17% of BDP. If we consider
the latest switches from Broadcom such as the Trident4 [2], we
are given ~ 4 MB of buffering per port. Assuming 10 ms inter-DC
round-trip delay and 400 Gbps link bandwidth, DCTCP requires
at least ~ 100 MB of buffering per port, which is much larger than
today’s switching fabric. Accordingly, intra-DC switches cannot
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support inter-DC traffic that co-exists with intra-DC traffic inside
datacenters. This gap is likely to increase even further as the net-
work bandwidth keeps increasing at a faster rate than the buffering
sizes [59].

Furthermore, having a buffer significantly smaller than the BDP
makes it harder to properly assess the extent of the congestion,
as small changes in the sending rate can easily result in either
over- or under-utilization of the network. Therefore, in §4, we
re-purpose phantom queues [10], i.e., virtual queues that were orig-
inally designed to provide low-latency within a datacenter, for
inter-datacenter communication to easily match the inter-DC BDP.

2.4 Inefficient loss handling

As discussed previously, most of the message sizes that cross WAN
links are bounded by the propagation delay. This has a very impor-
tant implication: a single packet loss could significantly increase
message delivery time since detecting an inter-DC packet loss and
retransmitting it is proportional to the large inter-datacenter RTT.
To shed more light on the importance of efficiently handling loss
for inter-DC flows, we measure the failure rates between pairs of
cloud VMs located in different regions of North America. More
specifically, we set up a simple RDMA API that sends 320 million
2KiB packets between the pairs of datacenters. The first selected
pair of datacenters (Setup 1) has an RTT of ~ 65 ms and an average
loss rate of 5.01 x 107> while the second pair (Setup 2) observes
an RTT of ~ 33 ms and an average loss rate of 1.22 x 107>, We
observe that while losses are rare, they can impose significant extra
latency. Thus, fast loss resolution is crucial for inter-DC traffic. In
addition to measuring the overall loss rate, we grouped the packets
into consecutive chunks of 10 packets and determined the probabil-
ity of losing more than one packet within the chunks. The results
(Table 1) uncovered that link-correlated drops within a chunk exist,
implying that a multi-link failure resilient scheme is preferred.

Losses Within Setup 1(65ms RTT) ‘ Setup 2 (33ms RTT)

Block
abloc Drops Loss Rate ‘ Drops Loss Rate
1 97403 3.0x107% | 12785 4.0x 1077
2 23984 75x107° | 7262 @ 2.3x107°
3 5007 1.6x107° 1560  4.9%1076

Table 1: Packet loss information for two datacenter configurations.

3 Uno Design Goals

Before outlining the details of our design in §4, this section high-
lights the goals we aim to achieve by proposing Uno.

3.1 Unified congestion control logic

As discussed in the previous section, in a congested network, there is
amassive gap in the granularity at which transports such as Gemini
[63] react to congestion signals for inter- and intra-DC flows, which
can potentially victimize intra-DC flows. At the same time, the
scale of Al training tasks is exceeding the resources available in one
datacenter, meaning that messages of the same importance can flow
both within and across datacenters. Therefore, ensuring bandwidth
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Figure 3: Gemini and MPRDMA+BBR fall short in efficiently achiev-
ing bandwidth fairness while Uno provides fast convergence to fair-
ness during a mixed incast scenario.

fairness among inter- and intra-DC flows and fast convergence to
the bandwidth fair share is critical [63]'.

Alas, existing solutions [20, 59, 63] either do not achieve band-
width fairness as they separate congestion control for inter- and
intra-DC flows, e.g., applying BBR [20] for inter-DC and DCTCP [9]
for intra-DC traffic, or experience slow convergence time because
they react to inter- and intra-DC congestion at different granulari-
ties. To illustrate this, we simulate two 8-ary fat-tree datacenters
[5] connected by eight 100 Gbps links via two border switches [63],
with inter-DC RTT set 128x larger than intra-DC RTT [63]. We
create incast by generating four intra-DC and four inter-DC 1 GiB
flows toward the same destination and record sending rates for
fairness. Figure 3 shows a simplified model of this setup.

We start by measuring rates as we use Gemini [63] as congestion
control, i.e., Figure 3 . While Gemini guarantees convergence
to fairness [63], we observe that the convergence occurs so slowly
that it outlives the flows’ completion times. We repeat the same
experiment with BBR’s [20] and MPRDMA’s [47] control loop for
inter- and intra-DC flows, respectively. Figure 3 © highlights
the unfairness among send rates of distinct flows as they are con-
trolled by separate congestion control mechanisms. To address this,
in Uno’s design, we deploy a unified control loop for both inter-
and intra-DC traffic that guarantees fairness while reacting to con-
gestion signals at the same granularity for inter- and intra-DC
workload. Our results, @ show that Uno converges to fairness
considerably faster than Gemini. To also ensure fast reaction to
congestion, Uno deploys Quick Adapt, i.e., under extreme network
congestion, indicated by a sharp drop in the number of ACKed bytes,
Uno dramatically reduces the send rates to quickly resolve over-
utilization. In §5, we show that Uno improves the overall latency
against different baselines and under distinct scenarios.

1One approach to flow-level fairness is using multiple priority queues, but inter-DC
switches may not support them [59]. It also fails to address the lack of inter-DC
buffer space [59] and requires constant tracking of competing flows to apply weighted
round-robin scheduling between inter- and intra-DC traffic.
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3.2 Near-zero queuing

To ensure low latency, especially for small messages, without signif-
icantly under-utilizing the network, keeping switch buffers lightly-
occupied is essential [9]. However, with empty queues, there is a
serious chance of network under-utilization. To avoid this, ECN-
based protocols typically keep some packets in the queue with small
queue occupancy fluctuations around the ECN marking threshold.
However, doing so is challenging with inter-DC traffic in the picture
as inter-DC flows can easily overwhelm small commodity switches
due to their large BDPs. To address this, we use phantom queues
[10, 22], i.e., virtual queues with arbitrary sizes and drain rates
that mimic physical queues. They increase occupancy on ingress
and drain at a constant rate, typically slightly below the line rate.
Intuitively, phantom queues offer two advantages: early congestion
signaling (due to lower drain rates) and burst smoothing.

Inter-DC Incast with intra-DC RPCs
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With Phantom Queue
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Figure 4: Showcasing the effect of phantom queues for intra-DC
traffic. @ shows the queue at the incast receiver over time without
phantom queues and with phantom queue () © shows the FCTs
for the intra-DC flows.

To highlight the potential advantages of phantom queues, we
simulate a simple scenario where we initiate long-lived flows from
8 different senders in a local datacenter toward a single receiver in
a remote datacenter, creating an incast scenario. In the receiver’s
datacenter, we also simulate sending several small messages from
the "Google RPC" CDF distribution [53]. Figure 4 illustrates the
queue occupancies over time with and without phantom queue at
the receiver bottleneck and the flow completion times of the small
RPC messages. As expected, phantom queues facilitate near-zero
queuing that results in 2X and 8X improvement in the average and
99th percentile FCT of the RPC messages, respectively.

3.3 Reliability and Load Balancing

To mitigate the delay penalties induced by packet loss and retrans-
missions, explained in §2.4, we adopt Maximum Distance Separable
(MDS) [4] erasure coding as a proactive countermeasure. In our
scheme, data is organized into distinct blocks, each composed of
both the original data packets and additional parity packets com-
puted via MDS coding. This “block” represents the minimal unit of
encoded data, ensuring that the original information can be fully
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Figure 5: Uno’s overall architecture.

&3 UnoRC

recovered as long as a sufficient number of packets are received,
even if some fail during transit. Given that our experiments re-
veal that packet losses are not purely random but tend to occur in
correlated clusters, the redundancy introduced by MDS coding is
crucial. It allows the system to tolerate minor burst losses with-
out waiting for slow retransmission timeouts, thereby maintaining
low latency across WAN links. This approach reduces recovery de-
lays and optimizes resource utilization by minimizing unnecessary
retransmissions.

While erasure coding solves the problem with certain failure
modes, it cannot completely help in all cases. For instance, if we
use ECMP routing, e.g., with Gemini [63] and Annulus [59], if a
link goes down, temporarily or permanently, all packets in a block
would be lost until the routing table gets updated making it harder
to reconstruct the message. To resolve this, we develop our custom
load balancing scheme to mitigate the classical shortcomings of
ECMP, e.g., hash collisions [30], while also improving the resilience
of erasure coding. We describe the details in §4.2.

4 Uno: a unified system for both intra- and
inter-DC communication

Given the goals outlined in the previous section, we design Uno, a
unified system that facilitates low-latency and fair communication
in both intra-DC and inter-DC environments. As shown in Figure
5, Uno has two components: 1) Congestion Control component
(UnoCC) and 2) Reliable Connectivity component (UnoRC).

UnoCC is a window-based congestion control scheme for both
intra- and inter-DC traffic that employs Additive Increase Multi-
plicative Decrease (AIMD) window adjustment to ensure fair band-
width sharing. To quickly converge to bandwidth fairness, UnoCC
reacts to congestion signals at the same granularity for intra- and
inter-DC flows. It further employs Quick Adapt?, which, under
extreme congestion (i.e., sharp drop in ACKed bytes), promptly
reduces the congestion window to quickly alleviate congestion and
avoid persistent over-utilization. To efficiently handle ECN marking
in both inter- and intra-DC switch buffers, UnoCC is augmented
with phantom queues [10], i.e., virtual queues with arbitrary sizes
and drain rates that mimic physical ones. Delay is used to distin-
guish physical from phantom queue congestion.

UnoRC combines subflow-level load balancing (UnoLB) with
erasure coding [4, 52] for inter-DC flows to improve routing perfor-
mance between datacenters and ensure loss resiliency. The key idea
is to use erasure coding to maximize the chances of latency-bound
messages getting delivered correctly to the receiver. To do so, we
send a certain number of parity packets for every block. However, to

2Quick Adapt has been previously proposed for communication inside datacenters
[15]. However, we tailor it for both intra- and inter-DC communication in this paper.
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Figure 6: UnoCC’s design.

further improve loss resiliency for a block, we also spread packets
of a single block across different paths to maximize the probabil-
ities of successful deliveries even in case of link failures. Finally,
we adaptively remove paths from our routing options when we
identify them as failed or congested paths which is detected either
via a sender-based timeout or a NACK from the receiver.

4.1 UnoCC

As presented in Figure 6, UnoCC assumes three congestion states
for the network: 1) Uncongested, 2) Congested, and 3) Extremely
congested. To cope with states 1 and 2, UnoCC employs an AIMD
rate control mechanism that uses ECN as the congestion signal.
UnoCC also uses relative delay, i.e., RTT — RTTp 4, but only to dif-
ferentiate between phantom and physical queue congestion events
(RTT and RT T4, are a packet’s measured RTT and the minimum
RTT in an uncongested network). Additionally, UnoCC deploys
Quick Adapt to facilitate fast reaction to extreme network conges-
tion (State 3). Algorithm 1 outlines distinct mechanisms in UnoCC’s
design.

Algorithm 1 UnoCC’s control loop

: procedure ONACK
if ECN not marked then

_ bytes_acked
cwnd = cwnd +a X —— 57—

1

2 > Uncongested network (AI)
3

4 end if

5: end procedure

6:

7: procedure ONEPOCH

8

if ecn_fraction > 0 then > Congested network (MD)

9: if delay == 0 then > Congestion in phantom queues
10: MDygcaie = MDgegre X 0.3 > Gentle Reduction
11: else > Congestion in physical queues
12: MDyseate = 1
13: end if
14: cwnd = cwnd X (1 = MDgeN X MDscage)

15: end if
16: end procedure
17:

18: procedure ONQA

19: if bytes_acked_in_qa < cwnd X [f then » Very congested network (QA)
20: cwnd = bytes_acked_in_qa

21: end if

22: end procedure

4.1.1 Additive Increase — Multiplicative Decrease (AIMD). When an
ACK packet arrives and it is not ECN marked, UnoCC increases the

congestion window (cwnd) by a X %. a is the Al factor
and is set as a fraction of BDP, e.g., 0.001 X BDP for our simulations.
Thus, after one RTT in an uncongested network, cwnd increases

by a. Note that a should be scaled depending on the queue size and
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the degree of incast that a network can support without losses in
the steady state. Unlike Al that is applied per ACK, MD is applied
at most once per epoch. Specifically, upon receiving the first ACK of
the flow, UnoCC stores an epoch activation time (7¢pocr) for that
flow which is initialized to the time of the ACK arrival. Additionally,
when a packet is being sent/re-sent, UnoCC stores its send/re-send
time (7). An epoch terminates when we receive an ACK for a data
packet whose Tk is = Tpoch- Upon epoch termination, UnoCC
increases Tepoch by epoch_period, ie., a time span proportional to
the packet’s RTT, and re-activates the epoch. Using this approach,
we ensure that enough packets are received before deciding to
apply MD which gives us better grasp of the network’s condition.
UnoCC considers an epoch period as congested if any packets has
been ECN-marked during the epoch. When applying MD, UnoCC
computes the MD factor (i.e., MDgcN) as SX(%). & represents
the exponential weighted moving average (EWMA) of the fraction
of ECN-marked packets across epochs, and K is a user-set constant
that indicates the extent of UnoCC'’s reaction to congested epochs.

We select UnoCC’s Al and MD factors (i.e., « and MDgcp, respec-
tively) similar to Gemini [63] to achieve guaranteed convergence
to fairness. However, Gemini experiences slow convergence time
due to reacting to congestion signals at different granularities for
inter- and intra-DC traffic (§2). Through extensive empirical ex-
perimentation, we found that by reacting to congestion signals at
the same granularity for both inter- and intra-DC flows, we can
better capture congestion events inside and across datacenters and,
thus, considerably improve the speed of convergence to the fair
bandwidth share. To this end, we use the same epoch_period, set
based on intra-DC RTT, for both inter- and intra-DC flows. In §5,
we quantitatively show that, despite having similar ATl and MD
factors, UnoCC achieves much faster convergence to fairness than
Gemini [63].

Finally, since phantom queues have slower drain rates than phys-
ical queues, they can signal the sender to slow down more than
needed and for too long. To avoid this, if UnoCC detects that the
physical queues are empty and phantom queues are congested, i.e.,
packets are ECN marked but packet delays indicate no congestion,
it employs a gentler reduction (MDy, ) by scaling down MDgcn.

4.1.2  Quick Adapt (QA). Events such as the arrival of new flows
or incast can potentially create extreme network congestion. Solely
relying on MD for resolving such congestion events is slow and
can significantly hurt latency. To avoid this, UnoCC deploys the
QA mechanism. Specifically, once every RTT, UnoCC evaluates if
the network is extremely congested by checking if the number of
ACKed bytes is considerably low, i.e., less than cwnd X § (B is the
user-set QA ratio). If the network is deemed as extremely congested,
the cwnd is sharply decreased to the number of bytes ACKed dur-
ing the QA period to quickly match the network’s instantaneous
capacity. To avoid over-reacting to congestion, after triggering QA,
UnoCC skips one RTT without triggering any QAs or MDs.

4.1.3  Phantom Queues. As discussed in §2, efficiently setting ECN
marking thresholds for a mixture of inter- and intra-DC traffic is
challenging as intra- and inter-DC switch buffer capacities differ,
and using only shallow buffers everywhere can also lead to oscilla-
tions for modern CCs due to the large inter-DC BDPs. To address
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this, we use phantom queues [10] in conjunction with UnoCC. The
phantom queue occupancy increases every time a new packet is
enqueued in the physical queue and decreases at a constant rate
(i.e., draining rate), which is a fraction of the link bandwidth. Note
that a phantom queue is easily implementable using a counter that
keeps track of its occupancy.

Using phantom queues enables us to correctly mark packets
with ECN signals regardless of the physical queue’s capacity. As
illustrated in §2, by properly setting the draining rate of the phan-
tom queues, we practically experience zero queuing at the physical
queues as long as the network is at its steady state. Specifically, in
steady state, as the phantom queues are drained at a lower speed
than the physical queues, the physical queues become empty before
the phantom queue occupancy reaches zero. This is important as it
gives extra bandwidth headroom, especially for small and latency-
sensitive intra-DC flows. Using phantom queues can potentially
penalize large throughput-intensive flows. However, our experi-
ment results show that by setting the phantom queue’s draining
rate slightly lower than physical queues, e.g., 10% lower, we avoid
victimizing large flows while keeping the benefiting small flows>.

4.2 UnoRC

As shown in Figure 7, UnoRC has two components: an erasure
coding component to enhance reliability, especially under failure,
and a simple but effective sub-flow level load balancer (UnoLB).

UnoRC
Latency-bound 00 The inter-DC RTT is - Asingle
messages high timeout/retx is bad
Subflow Routing (UnoLB) with Erasure Coding (EC)
Packets go on Datal
different paths
‘Data:i =
Sender eiver can
EELGEIN removes

Parityd BCTIITRNLELERR] Receiver
bad path even with failures

Figure 7: UnoRC’s design.

Erasure Coding (EC): For reliability, each inter-DC message is
divided into blocks of n packets, with x data and y parity packets.
A block can be reconstructed if at most y out of n packets are lost.
Upon receiving the first packet of a block, the receiver starts a timer
set to the estimated maximum queuing and transmission delay. If
the timer expires before enough packets arrive, a NACK is sent to
the sender requesting retransmission of the missing block. UnoRC
applies erasure coding only to inter-DC traffic due to long recovery
delays. While EC adds fixed overhead (e.g., 20%), it reduces packet
loss and improves completion times under failure and congestion
events, which is crucial in latency-bound scenarios (§5).

Load Balancing (UnoLB): Our load balancing scheme uses n
subflows and each subflow gets assigned its own path (either via
source-based assignment or by changing the source port value for
ECMP hashing). By itself, this simple action (somewhat similar to
MPTCP [27]) vastly improves the performance due to a decrease in
hash collisions. To integrate UnoLB with the reliability aspect (i.e.,

3This result aligns with prior work on phantom queues [10].
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Algorithm 2 Pseudocode for UnoLB

1: procedure ONSEND(packet)

2 packet [ header.source_port] < subflow|index]
3 index « (index+ 1) mod total_subflows

4: end procedure

5: procedure ONNACKORTIMEOUT(packet)

6: if (now() — last_reroute) > base_rtt then
7 update_subflow(packet)

8 last_reroute <« now()

9 end if

10: end procedure

erasure coding), we spread the packets of a block across n subflows.
Doing so increases the resilience to link failures. Moreover, UnoRC
switches from bad paths when it detects extreme congestion on
them. In particular, upon receiving a NACK (indicating an unre-
coverable block) or when a sender timeout occurs (possibly due to
lost NACKs caused by failures or corruption), UnoRC re-routes the
affected flows by randomly selecting a subflow that has recently
received ACKs, thereby reducing the likelihood of switching to
another congested or failed path. Algorithm 2 presents UnoRC’s
logic.

5 Performance Evaluation

We use htsim, a packet-level network simulator [33], to evaluate
Uno across distinct workloads and traffic patterns. Our key findings
are summarized below:

e Uno improves the average and tail latency compared to the
state-of-the-art solutions. Specifically, under 40% load and a
mixture of inter-DC and intra-DC flows, Uno improves the
99t percentile FCT by 1.4x compared to both MPRDMA+BBR
and Gemini.

e UnoCC provides fast convergence to fairness. Particularly,
with UnoCC under incast events created from various combi-
nations of intra- and inter-DC flows, all flows quickly converge
to their fair bandwidth share.

e UnoRC (i.e, UnoLB + EC) further improves the performance
under several failure scenarios by up to 3x compared to Uno
without erasure coding and 2X and 6X compared to RPS and
PLB, respectively.

5.1 Simulation Setup

Topology. We simulate two 8-ary fat-tree datacenters [5], each
consisting of 16 core switches and 8 pods with 4 aggregate and 4
edge switches. Each edge switch is connected to 4 servers. The dat-
acenters are connected through two border switches that are inter-
connected through eight links. Also, every core switch is connected
to a border switch through eight links. Unless stated otherwise, we
exploit 100 Gbps links for all our interconnects and set the switch
buffer capacities to 1 MiB per port.

Microbenchmarks. We first run microbenchmark experiments
similar to those performed in prior works [63] to demonstrate the
fairness advantages of Uno. Two types of traffic are evaluated: 1)
incast traffic originating from different sources and 2) permutation
traffic with randomly selected source and destination nodes.

Realistic Workload. The characteristics of intra-DC traffic dif-
fer from traffic spanning multiple datacenter networks [58, 65].
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Figure 8: The top plot showcases the fairness of Uno while the bottom plot shows the performance against other algorithms. The title on top
of each plot indicates how many inter- and intra-DC flows take part in the incast.

Therefore, we simulate different workloads within and across dat-
acenters. Similar to [63], we use the flow size distributions of
Google’s web search [9] for generating intra-DC traffic. To gener-
ate inter-DC traffic, we exploit the flow size distribution recorded
between two datacenters in Alibaba’s regional WAN [65]. Unless
stated otherwise, the flows’ arrival rates are generated based on
an exponential distribution, and the rates are scaled to achieve
a desired network load. Flow source and destination servers are
selected using a uniform random distribution, similar to previous
works [9, 63, 65]. The ratio of datacenter to WAN traffic is set to
4:1.

We also use an Al training workload for the inter-DC traffic
in one of our experiments. Particularly, we assume a data parallel
training strategy [42, 57] across the two datacenters, where each
datacenter has at least one replica of the model being trained. After
computing the gradients during the backward pass of each iteration,
an Allreduce (or separate Reducescatter and Allgather) collective
operation is initiated to synchronize the gradients across the data-
centers. Our experiments simulate inter-datacenter training of the
Llama 70B model and the parallelization strategy in its technical
report [32], which generates periodic traffic bursts of approximately
70-500 MiB per iteration [50]. The total number of send operations
depends on the number of Allreduce groups in the collective.

Evaluation metrics. We measure the mean and tail (99" per-
centile) Flow Completion Time (FCT) as our main evaluation metric.
We also report metrics such as queue occupancy and sending rate.

Baseline state-of-the-art (SOTA) approaches. We compare
Uno against two major baselines: 1) MPRDMA+BBR ([47]+[20]):
Widely deployed for enterprise WAN, BBR targets accurate RTT
and bandwidth estimation to maximize throughput and minimize la-
tency. Since BBR is only used for inter-DC communication, we com-
bine it with MPRDMA, an ECN-based congestion control scheme,
for managing intra-DC communication. 2) Gemini [63]: Similar
to UnoCC, Gemini is a congestion control protocol designed for
both intra-DC and inter-DC communication that exploits ECN and

1202

RTT to detect intra-DC and inter-DC congestion, respectively.* To
evaluate UnoRC, we evaluate it against different routing schemes
such as Random Packet Spraying (RPS) [24] and PLB [56].

Parameter Default Value
a (UnoCC’s Al factor) 0.001 X BDP
B (UnoCC’s QA factor) 0.5
K (UnoCC’s MD constant) %Xintra—DC BDP
Intra-DC RTT 14ps
Inter-DC RTT 2ms

Phantom queue drain rate  0.9xphysical queue drain rate

Table 2: Parameter table.

Parameter settings. To mark ECN, we use Random Early De-
tection [45]. Specifically, the packets are never ECN marked as
long as the destination queue occupancy is less than the minimum
ECN threshold (i.e., MinECNThresh) and always marked when the
occupancy is more than the maximum ECN threshold (i.e., MaxEC-
NThresh). Otherwise, the probability of marking packets increases
linearly. MinECNThresh and MaxECNThresh are set to 25% and 75%
of queue capacity. For Uno, we set a, f8, and K to 0.1% of the BDP,
0.5, and %xintra—DC BDP, respectively. The phantom queues drain
at 90% of the line rate. Unless stated otherwise, MTU, intra-DC RTT,
and inter-DC RTT are set to 4096 B, 14us, and 2ms, respectively
[63]. Table 2 summarizes the main parameters of our experiments.

5.2 Simulation results

5.2.1 Micro-benchmarks. As the first experiment, we simulate Uno
under intra-DC incast, inter-DC incast, and a mixture of the two. In
all scenarios, we generate a total of eight 1 GiB flows. Also, we use
packet spraying for all schemes as load balancing has a negligible
impact under receiver-side incast. In Figure 8, we present Uno’s

4Annulus [59], which works on top of other schemes such as BBR, could also be used
to enhance the performance of Uno under oversubscribed topologies. However, we
leave this add-on for future work.
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Figure 9: Showcasing results with a permutation workload.

fairness by plotting the sending rate of the flows involved in the
incast and evaluate its performance against other baselines. Our
findings show that Uno outperforms or matches the performance of
the other algorithms in all three scenarios and achieves near-ideal
latency. Moreover, using Uno, in all scenarios, the send rates of
inter- and intra-DC flows quickly converge to their fair bandwidth
share, highlighting Uno’s fast convergence to fairness.

We then consider a permutation scenario where each sender is
sending to another randomly selected node (within the same DC or
cross DCs). Since this could result in a lot of inter-DC communica-
tion (easily overwhelming the eight inter-DC links), we showcase
two scenarios: one where the topology is as-is with 800Gbps of
inter-DC bandwidth and another scenario where the inter-DC links
are fully provisioned. Here we showcase Uno with ECMP and Uno
with our custom load balancing solution (UnoLB) as part of UnoRC.
In Figure 9, we show the two results. Under the same ECMP load
balancing assumption, Uno is still significantly better than the al-
ternatives in both scenarios. The gap between Uno and the other
approaches further increases with UnoLB. As expected, average
FCTs are higher when fewer links connect the DCs.

5.2.2 Realistic workloads. To test Uno against realistic workloads,
we generate intra- and inter-DC traffic using Google’s web search
[9] and Alibaba’s WAN [65] traffic distributions, respectively, and
compare Uno+ECMP (i.e., UnoCC deployed beside ECMP for load
balancing) and Uno (i.e., UnoCC+UnoRC) against other baselines.
Figure 10 presents the results. We observe that, compared to Gemini
and MPRDMA+BBR, UnoCC reduces both average and tail latency
of inter-DC flows but slightly increases the latency of intra-DC web
search flows. This is because phantom queues’ drain rates are lower
than physical queues which can occasionally hurt the latency of
intra-DC flows. However, despite marginally increasing the latency
of intra-DC flows, UnoCC manages to improve the overall latency
by providing better congestion management and faster convergence
to fair bandwidth share, e.g., under 40% load, UnoCC improves
mean latency by 30% and 37% compared to MPRDMA+BBR and
Gemini, respectively. Additionally, by achieving balanced load and
loss resiliency on top of UnoCC, Uno manages to reduce the latency
of both intra- and inter-DC flows compared to other baselines. For
example, compared to MPRDMA+BBR and Gemini under 40% load,
Uno decreases the tail FCT by 4.4x and 5.3X for intra-DC flows and
by 1.7x and 2.1X for inter-DC flows, respectively.

We also evaluate Uno against different inter-DC propagation
delays. To this end, we repeat the previous experiments with 40%
network load and gradually increase the propagation delay of inter-
DC links. Figure 11 reports the FCT slowdown ratios of distinct
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schemes as we increase the ratio of inter-DC minimum RTT to
intra-DC minimum RTT from 8 to 512 by increasing the inter-DC
propagation delay (intra-DC minimum RTT = 14ps). We observe
that, when the gap between intra- and inter-DC RTT is small, Uno
is slightly outperformed by MPRDMA+BBR due to the phantom
queue slowdown. However, as the RTT ratio increases, and gets
closer to ratios observed in today’s networks (e.g., Figure 1), Uno
significantly outperforms MPRDMA+BBR and Gemini. In particular,
when the RTT ratio is 512, Uno’s tail FCT slowdown is 5X lower
than MPRDMA+BBR and Gemini. This shows that the existing
solutions fall short in efficiently handling the big gap between
intra- and inter-DC delays, while Uno is well-designed for it.
Lastly, we evaluate Uno’s performance under realistic workloads
and distinct inter- and intra-DC queue sizes. We re-run experiments
under 40% load using shallow- and deep-buffered switches inside
and across datacenters, respectively. Particularly, we set intra- and
inter-DC queue sizes to ~ 175 KiB (i.e., intra-DC BDP) and ~ 2.2
MiB (i.e., 0.1x inter-DC BDP) per port. Figure 12 shows average and
tail FCTs. Consistent with prior results (i.e., Figure 10), Uno+ECMP
lowers overall FCT by reducing inter-DC completion times with
only slight intra-DC latency increase, while Uno improves both:
compared to Gemini, tail FCT drops by 3.1x (intra) and 1.7X (inter);
versus MPRDMA+BBR, it drops by 3.6x (intra) and 1.8X (inter).

5.2.3 Failure Scenarios. We now move to the evaluation of the reli-
ability (RC) aspect of Uno. To do so, we evaluate Uno’s performance
under different failure scenarios. Since we have already evaluated
the effectiveness of UnoCC on its own against other state-of-the-art
algorithms, we now focus only on different variants of Uno when
it comes to load balancing and reliability and use UnoCC as con-
gestion control for all experiments. In particular, we compare three
different state-of-the-art load balancing schemes: packet spraying
[24], PLB [56] and UnoLB. We exclude ECMP since we already
evaluated the superiority of multipathing schemes in the previous
section and because ECMP is oblivious to network failures.

For erasure coding (EC), we note that the choice of the correct
block size and number of parity packets depends on the initial
assumptions of the network. Higher failure rates require more
redundancy but also introduce more overhead. Although there is
no single one-size-fits-all answer, we ran several experiments and
decided to use a (8, 2) scheme, i.e., 10 packets in a group with 8 data
packets and 2 parity packets.

The first experiment that we run consists of failing one of the
eight border links while simulating latency-sensitive 5MiB flows
between two datacenters that can theoretically saturate all the
inter-DC bandwidth. Since a single run can be heavily influenced
by the initial path selection, we re-run every experiment 100 times
to reduce biases and use violin plots to show detailed statistics
across runs. Figure 13 @ presents the results. We observe that
Uno outperforms both spraying and PLB with and without EC. This
is due to Uno’s ability to adaptively avoid problematic links and
intelligently distribute packets within the same block.

Then, we move to a different failure scenario and simulate ran-
dom loss events based on our real measurements from Table 1. We
implement and simulate the full failure logic comprehensive of the
correlation between different failure events. In Figure 13 , we
show the results for this scenario considering a single flow across
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Figure 12: Uno is superior to MPRDMA+BBR and Gemini even
when the queue capacities inside and across datacenters differ.

datacenters. In this case, blocks are only dropped in the unlikely
event that three or more packets are dropped within a block. What
we observe is that Uno is mostly matching packet spraying, as ex-
pected, and outperforming PLB both with and without EC. This is
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because PLB sticks to one path for a given flow, and when a link
becomes temporarily flaky, it negatively affects the entire block,
resulting in a higher runtime for the worst-case scenario.

Finally, in Figure 13 © we simulate the training strategy de-
scribed in §5.1. In this experiment, we simulate both link failures
and random drops. We generate 100 training iterations and focus
on the inter-DC communication. We report the ratio of the mea-
sured Allreduce collective runtime per training iteration to the
ideal runtime. We observe that Uno consistently outperforms other
baselines both with and without EC. Specifically, with EC, Uno
performs over 2X better than the second best algorithm and only
30% slower than the ideal completion time that assumes no ECMP
collisions or random drops.

6 Discussion

Leveraging modern datacenter congestion control for inter-
DC traffic. Using MPRDMA+BBR, we show the drawbacks of sep-
arating intra- and inter-DC control loops. While alternatives like
HPCC [43] and PowerTCP [3] exist, they too suffer from fairness
issues due to this separation. Unfortunately, most SOTA intra-DC
congestion control protocols, e.g., [9, 11, 33, 41, 43, 47], rely on
fast RTT feedback and specialized switch support (e.g., INT and
packet trimming), making them impractical across inter-DC envi-
ronments. Additionally, protocols like PowerTCP and HPCC use
single-pathing, limiting their ability to balance load. In contrast,
Uno applies congestion control uniformly across intra- and inter-
DC traffic, relies on widely supported ECN [9, 44], and employs
multi-pathing to achieve low latency, high reliability, and fairness.

Hardware implementation. While we showcase Uno’s po-
tential in simulations, we design it with hardware feasibility in
mind:

UnoCC’s key operations (i.e., AIMD and QA) are easily deployable
in the Linux kernel, similar to other widely deployed protocols like
TCP/DCTCP. For the congestion signal, UnoCC only uses ECN,
which is commonly supported by today’s switches [9, 44]. Phantom
queues, already supported by several vendors [19, 31] (such as in
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Figure 13: Uno’s performance under distinct failure scenarios and different workloads.

Cisco Nexus 5548P [1]) and implementable with simple packet-
increment/decrement counters, are also easily deployable on most
switches. Additionally, Uno uses hardware pacing for congestion
control, which is commonly available at the sender NIC [10, 41, 59].

UnoRC is deployable as software shim layers: the sender inserts
parity packets and the receiver decodes once enough packets arrive,
using a coarse software timer suited for long-latency links. Finally,
Uno’s re-routing can be implemented by either changing the IPv6
flow-label [56] or updating the UDP source port as described in
Ultra Ethernet [34].

7 Related Work

Congestion within and across datacenters. Most of the existing
proposals on congestion control either focus on intra-DC networks
or inter-DC WANSs and very little research has been done on si-
multaneously addressing intra- and inter-DC congestion [63]. To
address intra-DC congestion, existing body of work typically relies
on ECN [9, 10, 61, 66], delay [41, 51], or receiver-driven trans-
mission [21, 28, 33, 53]. WAN congestion management proposals
[12, 18, 20, 60], on the other hand, typically use delay to detect
WAN congestion due to the limited congestion detection support
from WAN switches. Gemini [63] is among the first proposals that
tries to bring inter- and intra-DC congestion control together as
a system by using ECN and delay to detect intra- and inter-DC
congestion, respectively. However, as presented in §5, Gemini suf-
fers slow convergence to bandwidth fairness. Annulus [59] tries
to address congestion near source but does not effectively han-
dle congestion that occurs far from the source and closer to the
destination. Moreover, Annulus works on top of other protocols,
thus not a standalone solution on its own. Uno, however, acts as
an effective system for both intra- and inter-DC environments by
ensuring fast reaction to congestion, bandwidth fairness, and loss
resiliency. HULL [10] and LGC-ShQ [22] have tried using phantom
queues but limited to the datacenter networks.

Addressing reliability and load balancing. Throughout the
years, many protocols have been proposed for load balancing inside
datacenters, spanning across different granularity: per flow, per sub-
flow, or per packet. Protocols such as ECMP, Hedera [6], MicroTE
[14], Flowcut [17] work on per-flow level but they either suffer
from hash collision or require complex global controllers. Solutions
working on sub-flow level load balancing try to mitigate the above
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issues. FlowBender [39], PLB [56], CONGA [8] significantly im-
prove routing performance over ECMP. However, they can still be
prone to collisions since they use one given path at a time or require
specialized hardware as is the case of CONGA. Finally, packet-level
load balancers, such as RPS [24], Drill [30], and REPS [16], provide
the best absolute performance but require out-of-order support
at the receiver and complicate loss detection. UnoLB tries to get
the best of both worlds by using multiple sub-flow at any given
time (similar to MPTCP [27]), but also by adaptively re-routing
flows away from congested paths. This ensures good load balanc-
ing performance while limiting the amount of out-of-order packets.
Besides load balancing, erasure coding also improves loss resiliency.
Specifically, erasure coding enhances data reliability by splitting
the data into fragments and adding strategic redundancy, allowing
recovery even with some failures [46, 49, 52]. In Cloudburst [64],
the idea of multi-pathing with erasure coding was explored but
focusing on intra-DC communication.

8 Conclusion

Simultaneously handling congestion both inside and across dat-
acenters is challenging due to the huge gap between intra- and
inter-DC propagation delays. To address this, we proposed Uno, a
unified system for efficient DC communication with two compo-
nents: (1) UnoCC, a congestion control scheme ensuring fairness
and fast reaction, and (2) UnoRC, a reliable routing mechanism com-
bining subflow-level load balancing and erasure coding. Through
extensive simulations, we showed that Uno improves latency and
fairness compared to the state-of-the-art solutions. Moreover, we
illustrated the effectiveness of Uno in ensuring loss resiliency when
encountering failure and against different load balancers.
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Appendix: Artifact Description/Artifact Evaluation

Artifact Description (AD)

A Overview of Contributions and Artifacts

A.1 Paper’s Main Contributions

C1 We develop Uno, a framework that unifies inter- and intra-
datacenter communication from the perspective of conges-
tion control, load balancing, and reliability.

C2 We improve and extend the htsim simulator to support multiple
datacenters and implement our scheme in htsim and several
other state-of-the-art algorithms (Gemini, MPRDMA, BBR).

C3 We evaluate Uno against the state-of-the-art algorithms un-
der distinct workloads and traffic patterns, ranging from
microbenchmarks to realistic workloads. We also evaluate
Uno under a simple inter-DC Al workload. On top of that,
we implement several failure scenarios in htsim to investi-
gate Uno’s performance under different failure cases. Our
findings show that Uno is superior to existing proposals as
it achieves lower latency, better loss resiliency, and faster
convergence to flow-level fairness.

A.2 Computational Artifacts

We provide a GitHub repository (https://github.com/spcl/Uno_SC25.
git) for the code. We also provide a DOI link (https://doi.org/10.
5281/zenodo.15916080) where users can find both the source code
of the repository and a Docker container with everything already
set up.

Related
Paper Elements

Artifact ID  Contributions
Supported

A; Ci-C3

Figures 1,3,4,8-12

B Artifact Identification
B.1 Computational Artifact A,

Relation To Contributions

The artifact contains the code necessary to run the experiments
and extract the results. However, we manually enhanced the qual-
ity of certain plots, Figure 3 for example, for stylistic purposes in
post-production. Key results are still readable without those anno-
tations though. The file structure of the project is organized as the
following:

e sim/: contains the code for distinct key modules required
for the simulations, such as network topology, congestion
control schemes, load balancing paradigms, etc.

e plotting/: contains the Python scripts used for processing
the results and extracting information such as Flow Comple-
tion Times (FCTs).

e sc25_X. sh: These files are the shell scripts for installing the
required packages, running the experiments, and extracting
the results. Examples of such files are sc25_pkt_install. sh
and sc_fig10@.sh.

e artifact_scripts/: These folder contains most of the Python
scripts needed to reproduce the results. We note that these
need to be run from the root directory of the project.
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e artifact_results/: When all simulation have run, the
artifact_results folder will contain a series of subfold-
ers for each figure of the paper. For example, after running
the sc25_fig1. sh script, the corresponding figures will be
available in artifact_results/figl/.

Expected Results

The results should demonstrate that Uno achieves fairness more
quickly than existing proposals. Furthermore, under a realistic work-
load consisting of Google’s web search traffic within datacenters
and Alibaba’s inter-datacenter traffic, Uno is expected to reduce
latency for both intra- and inter-datacenter traffic, regardless of the
network load. Finally, Uno is anticipated to offer strong reliability
characteristics, i.e., resilience to packet loss and fast loss recovery,
especially in inter-datacenter WAN environments prone to failures.

Expected Reproduction Time (in Minutes)

The artifacts can be installed and run on a local machine. The
overall time required to install htsim is quite short (=5 minutes).
However, the run time for the simulations really depends on the
number of generated flows and the degree of load. Specifically, with
realistic workload, it can take quite some time as the number of
generated flows and the network load are high. Below, we estimate
the complexity of each stage of the computational artifact:

o Artifact setup: 20 minutes to download the artifact, install
dependencies, and compile it using the provided files and
instructions.

o Artifact execution: ~2 days (48 hours) to run all the evalua-
tion scripts and generate all the results used in the paper. The
times reported are for worst-case scenarios, assuming a rela-
tively slow machine and without running multiple scripts
in parallel to speed up the evaluation. We note that most
experiments can be run relatively quickly, such as the ones
in Figure 8 or Figure 12 (in less than an hour), and only some
experiments take significantly longer (like Figure 10).

o Artifact analysis: Most plots are generated automatically
upon running various Python scripts. Some scripts require
to manually copy the results from one script to the other
for plotting purposes. We will also provide raw data, allow-
ing plots to be generated without re-running most of the
experiments.

Artifact Setup (incl. Inputs)

Hardware. This work does not rely on any specialized hardware.
All experiments were conducted using a standard x86 CPU, and
any similar processor capable of running the simulator used in our
study should be sufficient to reproduce the results.

Software. The project requires C++17 and Python3.8 as the
minimum dependencies for building and running both the htsim
simulator and our accompanying Python scripts. For the experi-
ments and computational artifacts presented in this paper, all code
was executed locally on Ubuntu 22.04 LTS via WSL2.

To process and visualize the raw data, we rely on a set of standard
Python packages, i.e., seaborn, scipy, numpy, and pandas.


https://github.com/spcl/Uno_SC25.git
https://github.com/spcl/Uno_SC25.git
https://doi.org/10.5281/zenodo.15916080
https://doi.org/10.5281/zenodo.15916080

Uno: A One-Stop Solution for Inter- and Intra-Data Center Congestion Control and Reliable Connectivity

Datasets/Inputs. We did not use any particular dataset or pub-
lic input data for our experiments except for the flow size dis-
tribution traces of Google’s web search workload and Alibaba’s
inter-datacenter traffic, which allow us to test Uno under realistic
workloads. Such traces have already been used in a number of pre-
vious papers and are properly cited in the main paper. Moreover,
we include the files having the CDF flow size distribution in the
actual repository.

The data used for Table 1 was collected using internal resources
of a large-scale cloud provider and is not easily reproducible.

Installation and Deployment. Installing htsim is straightforward
and can be done by executing the provided Makefile located in the
sim/ directory of the repository. This will compile the simulator
and set up the necessary binaries using the default system compiler
with C++17 support.

To assist users in getting started, we provide detailed bash com-
mands for running the Makefile and executing the associated
Python scripts in the README file included with the repository. These
instructions are intended to facilitate reproducibility and ease of
setup across typical Linux environments such as the one mentioned
above.

Artifact Execution

Once the htsim software has been successfully built (T7), all exper-
iments and visualizations can be executed using the corresponding
Bash and Python scripts T». These scripts are located in the root di-
rectory of the main repository. For most scripts, the corresponding
Figure is automatically generated and store inside the correspond-
ing folder (i.e.,, figl_results).

The workflow is quite simple and only has the following depen-
dencies: T} — T.

Artifact Analysis (incl. Outputs)

For each experiment that is run, the software automatically gener-
ates output data in a corresponding results folder. This data can be
analyzed manually or processed using the same Bash and Python
scripts to produce the plots included in the paper. Most plots are
automatically generated after running the programs.

Artifact Evaluation (AE)

C.1 Computational Artifact A;
Artifact Setup (incl. Inputs)

We provide two alternative methods to install and use the artifact: 1)
via a Docker container where all packages are already installed and
ready to be used, 2) via source code where the user can manually
download, build, and run all the required packages and scripts.

In ~ 5 minutes, the source code can be downloaded from either
GitHub or Zenodo with its unique DOI The Docker container is
only available on Zenodo due to its large size.

e GitHub: https://github.com/spcl/Uno_SC25.git
e Zenodo: https://doi.org/10.5281/zenodo.15916080

Using Docker: Docker version 26.1.3 was used to generate and
test the Docker images.
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The Docker container is called uno_container.tar.gz and is
downloadable from Zenodo.

Load and run the Docker image using the following command.
Note, this could take some minutes to run and might need root
privileges.

e sudo docker load -i uno_container.tar.gz
e sudo docker run -it uno:1.0

If viewing images such as plots inside the container is problem-
atic, it is possible to transfer that file to the host machine using:

e docker cp <containerId>:/file/path/within/container

/host/path/target
It is possible to obtain the <containerId> by running
e sudo docker ps

Using Source Files: After having downloaded the source code ei-
ther viagit clone or downloading and decompressing the archive
from Zenodo, the user must install all the required packages using
the following commands:

e ./sc25_pkg_install.sh

If you encounter any error and to avoid conflicts with local pack-
ages, we recommend running these commands in a clean Python
environment created with venv. For example, this is how this can
be done:

e python3 -m venv .venv
e source .venv/bin/activate

The htsim can then be installed by running the following com-
mand in the . /sim directory:

e make clean && cd datacenter/ && make clean &&
cd .. & make -j 8 && cd datacenter/ && make -j 8 &&
cd ..

Artifact Execution

Once the artifact has been installed using the steps above, the results
of the paper can be reproduced by running a series of scripts from
the root folder of the project. In particular, the user can run:

o ./sc25_figX.sh where X is the figure number.

Such a script will run all the necessary experiments to reproduce
the figures present in the paper.

The run time for the simulations depends on the number of
generated flows, the size of the topology, and the degree of the
network load. Specifically, with a realistic workload (Figures 10
and 11 in the paper), it can take quite some time as the number of
generated flows and the network load are high. Table 3 estimates
the time required for running the different scripts, while the list
below summarizes in detail the effect of each script:

e sc25_figl.sh: Figure 1 produces a plot showcasing how
network communication can be mostly latency bound or
bandwidth bound as the RTT of the network changes and
for different message sizes.

e sc25_fig3.sh: Figure 3 illustrates that MPRDMA + BBR
and Gemini fall short in efficiently achieving bandwidth
fairness, while Uno provides fast convergence to fairness
during a mixed incast scenario with intra-DC flows mixed
with inter-DC flows.
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Script Description Estimated runtime
sc25_figl.sh Effect of large network latency 1 minute
sc25_fig3.sh Simulating Uno’s fairness during mixed incast 5 minutes
sc25_fig4.sh | Simulating the effect of phantom queues on queue size and FCTs 5 minutes
sc25_fig8.sh | Simulating Uno’s performance during different incast scenarios 30 minutes
sc25_fig9.sh Evaluating Uno’s performance during a permutation workload 10 minutes
sc25_fig1@.sh Simulating different degrees of load with realistic traffic 24 hours
sc25_figll.sh Simulating distinct % with realistic workload 24 hours
sc25_figl2.sh Simulating Uno under different queue sizes 1 hour
sc25_fig13.sh Simulating UnoRC under different scenarios 10 minutes

Table 3: Bash scripts for running experiments and their corresponding run times. Note that the estimates are an upper bound

on modern hardware.

e sc25_fig4. sh: Figure 4 shows the effect of phantom queues
for intra-DC traffic. In particular, phantom queues help re-
duce the tail FCT of intra-DC flows while keeping queues
empty but not under-utilized (only by a controlled amount).

e sc25_fig8. sh: Figure 8 showcases more in detail how Uno
is both fair and has good completion times when running
incast with traffic coming from different sources (only inter-
DC, only intra-DC and mixed).

e sc25_fig9.sh: Figure 9 showcases the performance of Uno
compared to other state-of-the-art algorithms when running
a permutation workload.

e sc25_fig1@. sh: Figure 10 tests Uno against state-of-the-art
techniques, such as Gemini, under different realistic work-
loads (i.e., Google web search and Alibaba’s WAN traffic)
and distinct degrees of load.

e sc25_figl1.sh: Figure 11 tests Uno and other baselines
under realistic workloads and different inter-DC to intra-DC
RTT ratios.

e sc25_figl12.sh: Figure 12 focuses on the performance of
Uno when changing queue sizes, simulating much larger
inter-DC queues.

e sc25_fig13.sh: Figure 13 focuses on the load balancing
performance of Uno under different workloads and compares
it to other state-of-the-art load balancer algorithms.

Note that from the list above, some figure numbers are missing
as those figures don’t showcase results but just schematic represen-
tations of our work.

Finally, we also provide a script to run and reproduce some of
the results with the least amount of time required. In particular,
experiments for Figures 1, 3, 4, 8, 9, and 13 will be executed. This
can be done by running:

e ./sc25_quick_validation.sh

Artifact Analysis (incl. Outputs)

Once all (or a subset) of the data has been regenerated, it is now
possible to study the results and hence reproduce the results of
the paper. Such plots will be generated in different sub-folders of
artifact_results/ depending on the considered experiment and
Figure.

For each sub-folder, we report a quick analysis of the generated
data and plots:
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e figl1/: The sub-folder contains the bottom plot of the figure
used for Figure 1 of the paper.

e fig3/: This sub-folder includes the three files used to gener-
ate Figure 3. Each figure represents a different congestion
control algorithm.

e fig4/: This sub-folder includes two plots used to generate
Figure 4: one plot showcase the evolution of the queues with
and without phantom queue while the third plot showcases
average and 99th FCTs with and without phantom queues.

e fig8/: This sub-folder includes 2 files used in Figure 8. One
file focus on the cwnd evolution of Uno under different incast
scenarios, while the other file focuses on comparing Uno’s
performance to the other congestion control algorithms.

e fig9/: This sub-folder includes two files used in Figure 9. In
particular, we evaluate Uno’s performance during a permu-
tation scenario while also changing the degree of oversub-
scription across the datacenters.

e fig1@/: This sub-folder includes two files including the bar
charts in Figure 10 showcasing Uno’s performance with real
datacenter traces.

e fig11/: This sub-folder includes the bar charts of Figure 11.

e fig12/: This sub-folder includes one file showcasing Uno’s
performance when changing the inter-DC switch queue
sizes.

e fig13/: This sub-folder includes 3 files used to generate
Figure 13, focusing on UnoRC’s performance in a number of
scenarios.

We note that all our contributions (C1-C3) are present and rele-
vant in all of the results showcased here.
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