
.

.

Latest updates: hps://dl.acm.org/doi/10.1145/3712285.3759884
.

.

RESEARCH-ARTICLE

Uno: A One-Stop Solution for Inter- and Intra-Data Center Congestion
Control and Reliable Connectivity

TOMMASO BONATO, Microso Corporation, Redmond, WA, United States
.

SEPEHR ABDOUS, Johns Hopkins University, Baltimore, MD, United States
.

ABDUL KABBANI, Microso Corporation, Redmond, WA, United States
.

AHMAD GHALAYINI, Microso Corporation, Redmond, WA, United States
.

NADEEN GEBARA, Microso Corporation, Redmond, WA, United States
.

TERRY LAM, Microso Corporation, Redmond, WA, United States
.

View all
.

.

Open Access Support provided by:
.

Sapienza University of Rome
.

Microso Corporation
.

Swiss Federal Institute of Technology, Zurich
.

Johns Hopkins University
.

Carnegie Mellon University
.

PDF Download
3712285.3759884.pdf
11 January 2026
Total Citations: 2
Total Downloads: 2105
.

.

.

.

Published: 16 November 2025
.

.

Citation in BibTeX format
.

.

SC '25: The International Conference
for High Performance Computing,
Networking, Storage and Analysis
November 16 - 21, 2025
MO, St. Louis, USA
.

.

Conference Sponsors:
SIGHPC

SC '25: Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis (November 2025)
hps://doi.org/10.1145/3712285.3759884

ISBN: 9798400714665

.

https://dl.acm.org
https://www.acm.org
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/3712285.3759884
https://dl.acm.org/doi/10.1145/3712285.3759884
https://dl.acm.org/doi/10.1145/contrib-99660646998
https://dl.acm.org/doi/10.1145/institution-60026532
https://dl.acm.org/doi/10.1145/contrib-99659917880
https://dl.acm.org/doi/10.1145/institution-60005248
https://dl.acm.org/doi/10.1145/contrib-81361600353
https://dl.acm.org/doi/10.1145/institution-60026532
https://dl.acm.org/doi/10.1145/contrib-99659732246
https://dl.acm.org/doi/10.1145/institution-60026532
https://dl.acm.org/doi/10.1145/contrib-99659645737
https://dl.acm.org/doi/10.1145/institution-60026532
https://dl.acm.org/doi/10.1145/contrib-99661758068
https://dl.acm.org/doi/10.1145/institution-60026532
https://dl.acm.org/doi/10.1145/3712285.3759884
https://libraries.acm.org/acmopen
https://dl.acm.org/doi/10.1145/institution-60032350
https://dl.acm.org/doi/10.1145/institution-60026532
https://dl.acm.org/doi/10.1145/institution-60025858
https://dl.acm.org/doi/10.1145/institution-60005248
https://dl.acm.org/doi/10.1145/institution-60027950
https://dl.acm.org/action/exportCiteProcCitation?dois=10.1145%2F3712285.3759884&targetFile=custom-bibtex&format=bibtex
https://dl.acm.org/conference/sc
https://dl.acm.org/conference/sc
https://dl.acm.org/conference/sc
https://dl.acm.org/sig/sighpc
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3712285.3759884&domain=pdf&date_stamp=2025-11-15

Uno: A One-Stop Solution for Inter- and Intra-Data Center
Congestion Control and Reliable Connectivity

Tommaso Bonato
∗

ETH Zürich

Zurich, Switzerland

Microsoft Corporation

Redmond, USA

tommaso.bonato@inf.ethz.ch

Sepehr Abdous
∗

Johns Hopkins University

Baltimore, USA

Microsoft Corporation

Redmond, USA

sabdous1@jh.edu

Abdul Kabbani

Microsoft Corporation

Redmond, USA

abdulkabbani@microsoft.com

Ahmad Ghalayini

Microsoft Corporation

Redmond, USA

aghalayini@microsoft.com

Nadeen Gebara

Microsoft Corporation

Redmond, USA

nadeengebara@microsoft.com

Terry Lam

Microsoft Corporation

Redmond, USA

thelam@microsoft.com

Anup Agarwal

Carnegie Mellon University

Pittsburgh, USA

anupa@cmu.edu

Tiancheng Chen

ETH Zürich

Zurich, Switzerland

tiancheng.chen@inf.ethz.ch

Zhuolong Yu

Microsoft Corporation

Redmond, USA

zhuolongyu@microsoft.com

Konstantin Taranov

Microsoft Corporation

Redmond, USA

kotaranov@microsoft.com

Mahmoud Elhaddad

Microsoft Corporation

Redmond, USA

maelhadd@microsoft.com

Daniele De Sensi

Sapienza University

Rome, Italy

daniele.desensi@uniroma1.it

Soudeh Ghorbani

Johns Hopkins University

Baltimore, USA

soudeh@soudeh.net

Torsten Hoefler

ETH Zürich

Zurich, Switzerland

torsten.hoefler@inf.ethz.ch

Abstract
Cloud computing and AI workloads are driving unprecedented

demand for efficient communication within and across datacen-

ters. However, the coexistence of intra- and inter-datacenter traffic

within datacenters plus the disparity between the RTTs of intra-

and inter-datacenter networks complicates congestion manage-

ment and traffic routing. Particularly, faster congestion responses

of intra-datacenter traffic causes rate unfairness when competing

with slower inter-datacenter flows. Additionally, inter-datacenter

messages suffer from slow loss recovery and, thus, require reli-

ability. Existing solutions overlook these challenges and handle

inter- and intra-datacenter congestion with separate control loops

or at different granularities. We propose Uno, a unified system for

both inter- and intra-DC environments that integrates a transport

protocol for rapid congestion reaction and fair rate control with a

load balancing scheme that combines erasure coding and adaptive

routing. Our findings show that Uno significantly improves the

completion times of both inter- and intra-DC flows compared to

state-of-the-art methods such as Gemini.

∗
Both authors contributed equally to this research.

This work is licensed under a Creative Commons Attribution 4.0 International License.

SC ’25, St Louis, MO, USA
© 2025 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-1466-5/25/11

https://doi.org/10.1145/3712285.3759884

CCS Concepts
• Networks→ Network control algorithms.

Keywords
datacenter congestion control; distributed training; erasure coding

ACM Reference Format:
Tommaso Bonato, Sepehr Abdous, Abdul Kabbani, AhmadGhalayini, Nadeen

Gebara, Terry Lam, Anup Agarwal, Tiancheng Chen, Zhuolong Yu, Kon-

stantin Taranov, Mahmoud Elhaddad, Daniele De Sensi, Soudeh Ghorbani,

and Torsten Hoefler. 2025. Uno: A One-Stop Solution for Inter- and Intra-

Data Center Congestion Control and Reliable Connectivity. In The Interna-
tional Conference for High Performance Computing, Networking, Storage and
Analysis (SC ’25), November 16–21, 2025, St Louis, MO, USA. ACM, New York,

NY, USA, 16 pages. https://doi.org/10.1145/3712285.3759884

1 Introduction
With the drastic growth in cloud computing, HPC, and AI work-

loads, ensuring congestion-free communication and efficient traffic

routing both inside and across multiple datacenters (DCs) is becom-

ing more crucial than ever [25, 37, 55]. Specifically, reports from

Google highlight a 100× increase in their inter-DC WAN traffic vol-

ume during a five-year period [36]. Additionally, with the growth

of large-scale AI models, fitting entire training jobs inside a single

datacenter is becoming infeasible [48], e.g., Google’s Gemini was

trained on several Google supercomputers [29], and, more recently,

OpenAI used several clusters to train its GPT-4.5 model [54].

Many congestion control protocols have been developed through-

out the years to separately ensure efficient communication in intra-

DC [3, 9, 11, 41, 43, 47, 51, 61, 62] and inter-DC [20, 35, 37, 40, 59]

1195

https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://www.acm.org/publications/policies/artifact-review-and-badging-current
https://orcid.org/0000-0002-2345-473X
https://orcid.org/0000-0003-4443-3863
https://orcid.org/0000-0001-7106-3824
https://orcid.org/0009-0009-4130-9948
https://orcid.org/0009-0001-9071-6621
https://orcid.org/0009-0003-9248-3328
https://orcid.org/0000-0002-0720-7843
https://orcid.org/0009-0002-8071-2552
https://orcid.org/0000-0002-8846-5229
https://orcid.org/0000-0003-1356-5951
https://orcid.org/0009-0000-0335-7898
https://orcid.org/0000-0002-7244-639X
https://orcid.org/0000-0002-1331-1372
https://orcid.org/0000-0002-1333-9797
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3712285.3759884
https://doi.org/10.1145/3712285.3759884

SC ’25, November 16–21, 2025, St Louis, MO, USA Bonato, Abdous, et al.

2ms

5ms

11ms

24ms

21ms

2ms

1ms
5ms

4ms
5ms

1ms

4ms 10ms
1ms

2ms

1ms

3ms

2ms

2ms

DC links
~1us

A

B

Figure 1: A○ shows inter-DC links for Azure in Europe and their
delay assuming point-to-point connections. B○ shows that inter-DC
links make even medium-large messages latency-bound.

environments, but very little research has been done on simul-

taneously handling both [63]. While inter- and intra-datacenter

traffic are usually treated as separate entities, they co-exist within

datacenters and compete over resources. Therefore, it is crucial

to ensure efficient communication for each entity while also con-

sidering the other entity [63]. However, doing so is challenging

due to the inherent differences between datacenter networks and

WANs. In particular, within a single datacenter, cable lengths and

propagation delays are small and, mostly, homogeneous. However,

inter-datacenterWANs are built using long physical links with large

propagation delays [59, 63]. Additionally, inter-DC links traverse

different geographical paths thereby introducing heterogeneity in

link propagation delays and additional risks of failures.

Unlike datacenter networks, in inter-DC WANs, the completion

time of even large messages is bounded by latency rather than

throughput due to the large propagation delays. Particularly, in

a modern datacenter infrastructure, it might take at most tens of

microseconds for a packet to go from any given node to any desti-

nation, assuming a lightly-loaded network [23, 51]. On the other

hand, when going across datacenters, such delay increases dramati-

cally to multiple milliseconds, e.g., Figure 1 A○ presents link delays

between Microsoft Azure’s datacenters across Europe. Figure 1 B○

presents the percentage of a message’s completion time, i.e., time

taken from sending the first packet of the message to receiving

the last ACK, that is due to the aggregate propagation delay across

distinct message sizes and intra- and inter-DC propagation delays

(indicated as RTTs). For typical intra-datacenter RTTs (i.e., 10𝜇𝑠 to
40𝜇𝑠 [41, 51]), as we increase the message size, the completion time

quickly becomes dominated by the sending throughput for sizes

greater than 256 KiB. On the other hand, for inter-datacenter RTTs

(i.e., 1 ms to 60 ms [59, 63]), the completion time becomes mostly

bounded by the propagation delay. For instance, when the inter-DC

RTT is 20 ms, the completion time is dominated by propagation

delay if messages are smaller than 1 GiB, which is quite large (mes-

sage sizes recorded from Alibaba’s inter-DC traces are all smaller

than 300 MB [65]). Moreover, with increasing link bandwidths, this

will only become more extreme in the future. While this theoretical

study gives us some useful insights, we note that actual bounds

would slightly change depending on the network’s conditions.

This massive delay gap between intra-DC and inter-DC net-

works introduces several challenges for simultaneous and efficient

congestion management of both intra- and inter-DC traffic:

1) Diverse congestion feedback granularity: The congestion
feedback loop for inter-DC flows is significantly delayed compared to
intra-DC traffic. Consequently, upon receiving a congestion signal

for inter-DC traffic, it is hard to know if the path is still congested.

On top of that, the delay mismatch makes it hard to maintain

fairness between intra- and inter-DC flows while competing over a

bottleneck link.

2) BDP heterogeneity: Inter-DC Bandwidth Delay Product (BDP)
is significantly larger than intra-DC BDP due to its long RTTs, e.g.,
with 10 ms RTT and 400 Gbps link bandwidth, the inter-DC BDP

is ≈ 500 MB. While commodity switch buffers have increased in

size during the years [13], they are still quite small, especially intra-

DC switch buffers, compared to inter-DC BDP. Meanwhile, many

congestion control algorithms [9, 61, 66] assume the capacity of

switches to be at least a fraction of BDP, e.g., 17% for DCTCP [9].

While this assumption holds for intra-datacenter flows, whose BDPs

are typically less than 1 MiB, it becomes unrealistic for inter-DC

flows. The lack of buffering space in switches is amplified as cloud

providers are using shallow-buffered commodity switches to be

cost-efficient and improve scalability [26, 37].

3) Inefficient loss handling: Packet loss and its consequent re-
transmission significantly increase the message completion time in
latency-bound WANs. Even with advanced loss detection mecha-

nisms such as packet trimming [33], the loss notificationmechanism

takes a long time due to the large propagation delay. Therefore,

deploying efficient loss recovery mechanisms traffic is necessary.

While existing proposals, such as Gemini [63] and BBR [20], try

to tackle some of these challenges, to the best of our knowledge,

no proposals have addressed them all. Specifically, BBR is dedi-

cated only to WAN traffic and requires another transport, such as

DCTCP [9], to handle intra-DC traffic. With separate transports, it

is challenging to guarantee fairness. Gemini, on the other hand, is

a window-based congestion control for both intra- and inter-DC

communication that is proven to achieve bandwidth fairness among

intra- and inter-DC flows. However, as Gemini’s granularity for

reacting to intra-DC and inter-DC congestion signals significantly

varies, Gemini experiences slow convergence to fairness and is

1196

Uno: A One-Stop Solution for Inter- and Intra-Data Center Congestion Control and Reliable Connectivity SC ’25, November 16–21, 2025, St Louis, MO, USA

Vastly diverse RTTs and
delayed feedback.

Mismatch between BDP and
buffer capacity.

UnoCC
Fair between different RTTs.

Uses phantom queues to
mitigate BDP mismatch.

Most messages are latency
bound.

Single loss can have a
dramatic impact.

UnoRC
Incorporates erasure

coding with load balancing
(UnoLB) to limit drops.

Figure 2: To ensure efficient communication within and across
datacenters, Uno integrates congestion control, load balancing, and
loss resiliency.

prone to network under-utilization (§2). Lastly, all these techniques

suffer from inefficient loss handling for WAN traffic. To resolve

these problems, we introduce Uno, a system that tightly integrates

congestion control, load balancing, and loss resiliency to create a

unified solution for both intra- and inter-DC communication. As

shown in Figure 2, Uno employs two key components:

1) Congestion Control component (UnoCC): When mes-

sages become throughput-bound and congestion control becomes

vital, UnoCC exploits Explicit Congestion Notification (ECN) to

efficiently handle congestion both inside and across datacenters

and simultaneously provide low latency and flow-level fairness for

intra-DC and inter-DC traffic. To ensure effective congestion man-

agement across datacenters, Uno uses phantom queues [10], i.e.,
virtual queues with arbitrary sizes that mimic the behavior of phys-

ical queues, to match the high BDPs of the inter-DC connections

regardless of the physical queue capacity.

2) Reliable Connectivity component (UnoRC): Since most

messages are latency-bound when traversing inter-DC WAN, Uno

augments message transmission with erasure coding [52] to increase
loss recovery without packet re-transmission for cross datacenter

communication. Furthermore, Uno integrates the erasure coding

logic with a sub-flow level load balancing (UnoLB) scheme that

leverages multi-pathing of modern networks.

We evaluate Uno using htsim simulations [33] and compare it

against MPRDMA+BBR ([47]+[20]) and Gemini [63]. Our results

show that Uno significantly improves latency, fairness, and loss

resiliency. For instance, under 60% load and a mixture of both inter-

and intra-DC workloads, Uno improves the 99
𝑡ℎ

percentile FCT by

31% and 30% compared to BBR+MPRDMA and Gemini, respectively.

2 Coexistence among inter- and intra-DC traffic:
challenges and opportunities

This section outlines the challenges introduced by the inherent

heterogeneity between intra-DC and inter-DC propagation delays.

2.1 Diverse congestion feedback granularity
Typically, the workload inside a datacenter is comprised of both

intra-DC and inter-DC traffic. Meanwhile, there exists a huge gap

between the congestion feedback granularity of inter- and intra-DC

flows due to the significant difference between their propagation

delays [63]. For instance, considering intra-DC RTT of 10𝜇s [41, 51]

and inter-DC RTT of 10ms [59, 63], every inter-DC RTT corre-

sponds to 1000 intra-DC RTTs. This means that intra-DC flows

potentially receive congestion signals 1000× more frequently than

inter-DC flows. Therefore, in cases of network congestion caused

by a mixture of inter- and intra-DC traffic, the intra-DC flows ad-

just their rates more frequently than inter-DC flows which can

potentially victimize intra-DC traffic and hurt flow-level fairness.

Furthermore, as shown in Figure 4 A○ in §3, the large gap be-

tween the propagation delay of inter- and intra-DC traffic can

cause network under-utilization and queue occupancy oscillations

in steady state. Specifically, the congestion feedback for inter-DC

flows can be piggybacked to the senders long after the actual con-

gestion had been resolved by intra-DC flows adjusting their rates. In

such scenario, reducing the send rate of inter-DC flows upon receiv-

ing the congestion signals creates long periods of under-utilization

before the flows ramp up and fill the excess network capacity.

2.2 Heterogeneous hot spots
Commodity switches, especially those deployed in inter-datacenter

WAN, limit the signals used for congestion detection [63]. There-

fore, packet loss, delay, and Explicit Congestion Notification (ECN)

are commonly used to detect congestion both inside and between

datacenters [9, 41, 47, 51, 61, 63, 66]. Solely relying on packet loss

and packet re-transmission for detecting congestion and reacting

to it imposes significant extra latency as it is only triggered when

the switch buffers are extremely congested [9, 41, 61].

With ECN as the congestion signal, it is difficult to properly

set the ECN marking threshold when having mixed inter-DC and

intra-DC traffic [63]. This is because the buffer capacity of WAN

switches can be larger than that of the switches deployed inside

datacenters, as is the case in Gemini [63]. Additionally, inter-DC

Bandwidth Delay Products (BDPs) are usually much larger than

intra-DC BDPs. Therefore, inter-DC traffic requires much larger

ECN marking thresholds compared to traffic staying within the

datacenter. With delay as the congestion signal, it is challenging to

distinguish inter-datacenter hot spots from intra-datacenter. Specifi-

cally, it is non-trivial to know whether the increased delay indicates

extreme congestion in shallow-buffered intra-DC switches or mi-

nor congestion in deep-buffered inter-DC switches. Using shallow

buffers everywhere could help the delay signal but it would still

be a noisy signal due to the large inter-DC latency. Annulus [59]

introduces Quantized Congestion Notification (QCN) [7, 38] to de-

tect early congestion for inter-DC flows. However, it only helps if

the congestion happens near source before crossing the datacenter

boundary since it relies on sending an early warning on the reverse

path from the congestion hot spot to the source.

2.3 BDP heterogeneity
Most reactive congestion control protocols assume a minimum

amount of available buffer capacity for proper operation, e.g.,DCTCP
[9] requires the buffer space to be at least 17% of BDP. If we consider

the latest switches from Broadcom such as the Trident4 [2], we

are given ∼ 4 MB of buffering per port. Assuming 10 ms inter-DC

round-trip delay and 400 Gbps link bandwidth, DCTCP requires

at least ∼ 100 MB of buffering per port, which is much larger than

today’s switching fabric. Accordingly, intra-DC switches cannot

1197

SC ’25, November 16–21, 2025, St Louis, MO, USA Bonato, Abdous, et al.

support inter-DC traffic that co-exists with intra-DC traffic inside

datacenters. This gap is likely to increase even further as the net-

work bandwidth keeps increasing at a faster rate than the buffering

sizes [59].

Furthermore, having a buffer significantly smaller than the BDP

makes it harder to properly assess the extent of the congestion,

as small changes in the sending rate can easily result in either

over- or under-utilization of the network. Therefore, in §4, we

re-purpose phantom queues [10], i.e., virtual queues that were orig-
inally designed to provide low-latency within a datacenter, for

inter-datacenter communication to easily match the inter-DC BDP.

2.4 Inefficient loss handling
As discussed previously, most of the message sizes that cross WAN

links are bounded by the propagation delay. This has a very impor-

tant implication: a single packet loss could significantly increase

message delivery time since detecting an inter-DC packet loss and

retransmitting it is proportional to the large inter-datacenter RTT.

To shed more light on the importance of efficiently handling loss

for inter-DC flows, we measure the failure rates between pairs of

cloud VMs located in different regions of North America. More

specifically, we set up a simple RDMA API that sends 320 million

2KiB packets between the pairs of datacenters. The first selected

pair of datacenters (Setup 1) has an RTT of ≈ 65 ms and an average

loss rate of 5.01 × 10−5 while the second pair (Setup 2) observes

an RTT of ≈ 33 ms and an average loss rate of 1.22 × 10
−5
. We

observe that while losses are rare, they can impose significant extra

latency. Thus, fast loss resolution is crucial for inter-DC traffic. In

addition to measuring the overall loss rate, we grouped the packets

into consecutive chunks of 10 packets and determined the probabil-

ity of losing more than one packet within the chunks. The results

(Table 1) uncovered that link-correlated drops within a chunk exist,

implying that a multi-link failure resilient scheme is preferred.

Losses Within
a Block

Setup 1 (65ms RTT) Setup 2 (33ms RTT)

Drops Loss Rate Drops Loss Rate

1 97 403 3.0 × 10−4 12 785 4.0 × 10−5
2 23 984 7.5 × 10−5 7 262 2.3 × 10−5
3 5 007 1.6 × 10−5 1 560 4.9 × 10−6

Table 1: Packet loss information for two datacenter configurations.

3 Uno Design Goals
Before outlining the details of our design in §4, this section high-

lights the goals we aim to achieve by proposing Uno.

3.1 Unified congestion control logic
As discussed in the previous section, in a congested network, there is

a massive gap in the granularity at which transports such as Gemini

[63] react to congestion signals for inter- and intra-DC flows, which

can potentially victimize intra-DC flows. At the same time, the

scale of AI training tasks is exceeding the resources available in one

datacenter, meaning that messages of the same importance can flow

both within and across datacenters. Therefore, ensuring bandwidth

0 200 400 600
Time (ms)

0

25

50

75

100

Se
nd

in
g

Ra
te

 (G
bp

s)

Inter-DC flow
Intra-DC flow

 Gemini

B

0 250 500 750
Time (ms)

0
25
50
75

100

Se
nd

in
g

Ra
te

 (G
bp

s) MPRDMA+BBR

C
0 200 400 600

Time (ms)

0

25

50

75

100

Se
nd

in
g

Ra
te

 (G
bp

s)

D

 Uno

Receiver 15Sending to 15 Sending to 15

DC1 DC2

Hotspot

 Example Setup

A

Ideal fair
sending rate

Figure 3: Gemini andMPRDMA+BBR fall short in efficiently achiev-
ing bandwidth fairness while Uno provides fast convergence to fair-
ness during a mixed incast scenario.

fairness among inter- and intra-DC flows and fast convergence to

the bandwidth fair share is critical [63]
1
.

Alas, existing solutions [20, 59, 63] either do not achieve band-

width fairness as they separate congestion control for inter- and

intra-DC flows, e.g., applying BBR [20] for inter-DC and DCTCP [9]

for intra-DC traffic, or experience slow convergence time because

they react to inter- and intra-DC congestion at different granulari-

ties. To illustrate this, we simulate two 8-ary fat-tree datacenters

[5] connected by eight 100 Gbps links via two border switches [63],

with inter-DC RTT set 128× larger than intra-DC RTT [63]. We

create incast by generating four intra-DC and four inter-DC 1 GiB

flows toward the same destination and record sending rates for

fairness. Figure 3 A○ shows a simplified model of this setup.

We start by measuring rates as we use Gemini [63] as congestion

control, i.e., Figure 3 B○. While Gemini guarantees convergence

to fairness [63], we observe that the convergence occurs so slowly

that it outlives the flows’ completion times. We repeat the same

experiment with BBR’s [20] and MPRDMA’s [47] control loop for

inter- and intra-DC flows, respectively. Figure 3 C○ highlights

the unfairness among send rates of distinct flows as they are con-

trolled by separate congestion control mechanisms. To address this,

in Uno’s design, we deploy a unified control loop for both inter-

and intra-DC traffic that guarantees fairness while reacting to con-

gestion signals at the same granularity for inter- and intra-DC

workload. Our results, D○, show that Uno converges to fairness

considerably faster than Gemini. To also ensure fast reaction to

congestion, Uno deploys Quick Adapt, i.e., under extreme network

congestion, indicated by a sharp drop in the number of ACKed bytes,

Uno dramatically reduces the send rates to quickly resolve over-

utilization. In §5, we show that Uno improves the overall latency

against different baselines and under distinct scenarios.

1
One approach to flow-level fairness is using multiple priority queues, but inter-DC

switches may not support them [59]. It also fails to address the lack of inter-DC

buffer space [59] and requires constant tracking of competing flows to apply weighted

round-robin scheduling between inter- and intra-DC traffic.

1198

Uno: A One-Stop Solution for Inter- and Intra-Data Center Congestion Control and Reliable Connectivity SC ’25, November 16–21, 2025, St Louis, MO, USA

3.2 Near-zero queuing
To ensure low latency, especially for small messages, without signif-

icantly under-utilizing the network, keeping switch buffers lightly-

occupied is essential [9]. However, with empty queues, there is a

serious chance of network under-utilization. To avoid this, ECN-

based protocols typically keep some packets in the queue with small

queue occupancy fluctuations around the ECN marking threshold.

However, doing so is challenging with inter-DC traffic in the picture

as inter-DC flows can easily overwhelm small commodity switches

due to their large BDPs. To address this, we use phantom queues

[10, 22], i.e., virtual queues with arbitrary sizes and drain rates

that mimic physical queues. They increase occupancy on ingress

and drain at a constant rate, typically slightly below the line rate.

Intuitively, phantom queues offer two advantages: early congestion

signaling (due to lower drain rates) and burst smoothing.

With Phantom
Queues

Without Phantom
Queues

Real queue remains empty

Phantom queue stable

Inter-DC Incast with intra-DC RPCs
Without Phantom Queue With Phantom Queue

Reporting the FCTs
of the short

intra-DC messages

A B

C

Figure 4: Showcasing the effect of phantom queues for intra-DC
traffic. A○ shows the queue at the incast receiver over time without
phantom queues and with phantom queue (B○). C○ shows the FCTs
for the intra-DC flows.

To highlight the potential advantages of phantom queues, we

simulate a simple scenario where we initiate long-lived flows from

8 different senders in a local datacenter toward a single receiver in

a remote datacenter, creating an incast scenario. In the receiver’s

datacenter, we also simulate sending several small messages from

the "Google RPC" CDF distribution [53]. Figure 4 illustrates the

queue occupancies over time with and without phantom queue at

the receiver bottleneck and the flow completion times of the small

RPC messages. As expected, phantom queues facilitate near-zero

queuing that results in 2× and 8× improvement in the average and

99
𝑡ℎ

percentile FCT of the RPC messages, respectively.

3.3 Reliability and Load Balancing
To mitigate the delay penalties induced by packet loss and retrans-

missions, explained in §2.4, we adopt Maximum Distance Separable

(MDS) [4] erasure coding as a proactive countermeasure. In our

scheme, data is organized into distinct blocks, each composed of

both the original data packets and additional parity packets com-

puted via MDS coding. This “block” represents the minimal unit of

encoded data, ensuring that the original information can be fully

Uno

UnoCC

AIMD

UnoRC

Quick
Adapt (QA)

Phantom Queue

Subflow-level LB (UnoLB)

Erasure Coding (EC)

ECN Based

Figure 5: Uno’s overall architecture.

recovered as long as a sufficient number of packets are received,

even if some fail during transit. Given that our experiments re-

veal that packet losses are not purely random but tend to occur in

correlated clusters, the redundancy introduced by MDS coding is

crucial. It allows the system to tolerate minor burst losses with-

out waiting for slow retransmission timeouts, thereby maintaining

low latency across WAN links. This approach reduces recovery de-

lays and optimizes resource utilization by minimizing unnecessary

retransmissions.

While erasure coding solves the problem with certain failure

modes, it cannot completely help in all cases. For instance, if we

use ECMP routing, e.g., with Gemini [63] and Annulus [59], if a

link goes down, temporarily or permanently, all packets in a block

would be lost until the routing table gets updated making it harder

to reconstruct the message. To resolve this, we develop our custom

load balancing scheme to mitigate the classical shortcomings of

ECMP, e.g., hash collisions [30], while also improving the resilience

of erasure coding. We describe the details in §4.2.

4 Uno: a unified system for both intra- and
inter-DC communication

Given the goals outlined in the previous section, we design Uno, a

unified system that facilitates low-latency and fair communication

in both intra-DC and inter-DC environments. As shown in Figure

5, Uno has two components: 1) Congestion Control component

(UnoCC) and 2) Reliable Connectivity component (UnoRC).

UnoCC is a window-based congestion control scheme for both

intra- and inter-DC traffic that employs Additive Increase Multi-

plicative Decrease (AIMD) window adjustment to ensure fair band-

width sharing. To quickly converge to bandwidth fairness, UnoCC

reacts to congestion signals at the same granularity for intra- and

inter-DC flows. It further employs Quick Adapt2, which, under
extreme congestion (i.e., sharp drop in ACKed bytes), promptly

reduces the congestion window to quickly alleviate congestion and

avoid persistent over-utilization. To efficiently handle ECNmarking

in both inter- and intra-DC switch buffers, UnoCC is augmented

with phantom queues [10], i.e., virtual queues with arbitrary sizes

and drain rates that mimic physical ones. Delay is used to distin-

guish physical from phantom queue congestion.

UnoRC combines subflow-level load balancing (UnoLB) with

erasure coding [4, 52] for inter-DC flows to improve routing perfor-

mance between datacenters and ensure loss resiliency. The key idea

is to use erasure coding to maximize the chances of latency-bound

messages getting delivered correctly to the receiver. To do so, we

send a certain number of parity packets for every block. However, to

2
Quick Adapt has been previously proposed for communication inside datacenters

[15]. However, we tailor it for both intra- and inter-DC communication in this paper.

1199

SC ’25, November 16–21, 2025, St Louis, MO, USA Bonato, Abdous, et al.

UnoCC
Transmission-

bound messages
Congestion

control crucial
Vastly different
RTTs and BDPs

Sender

C
w

nd

Time

QAAI

MD

AI

Network

Physical
queue

Physical
queue Receiver

Phantom Queue
AI

Figure 6: UnoCC’s design.

further improve loss resiliency for a block, we also spread packets

of a single block across different paths to maximize the probabil-

ities of successful deliveries even in case of link failures. Finally,

we adaptively remove paths from our routing options when we

identify them as failed or congested paths which is detected either

via a sender-based timeout or a NACK from the receiver.

4.1 UnoCC
As presented in Figure 6, UnoCC assumes three congestion states

for the network: 1) Uncongested, 2) Congested, and 3) Extremely

congested. To cope with states 1 and 2, UnoCC employs an AIMD
rate control mechanism that uses ECN as the congestion signal.

UnoCC also uses relative delay, i.e., 𝑅𝑇𝑇 − 𝑅𝑇𝑇𝑏𝑎𝑠𝑒 , but only to dif-

ferentiate between phantom and physical queue congestion events

(𝑅𝑇𝑇 and 𝑅𝑇𝑇𝑏𝑎𝑠𝑒 are a packet’s measured RTT and the minimum

RTT in an uncongested network). Additionally, UnoCC deploys

Quick Adapt to facilitate fast reaction to extreme network conges-

tion (State 3). Algorithm 1 outlines distinct mechanisms in UnoCC’s

design.

Algorithm 1 UnoCC’s control loop

1: procedure OnAck
2: if 𝐸𝐶𝑁 𝑛𝑜𝑡 𝑚𝑎𝑟𝑘𝑒𝑑 then ⊲ Uncongested network (AI)

3: 𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑 + 𝛼 × 𝑏𝑦𝑡𝑒𝑠_𝑎𝑐𝑘𝑒𝑑

𝑐𝑤𝑛𝑑

4: end if
5: end procedure
6:

7: procedure OnEpoch
8: if 𝑒𝑐𝑛_𝑓 𝑟𝑎𝑐𝑡𝑖𝑜𝑛 > 0 then ⊲ Congested network (MD)

9: if 𝑑𝑒𝑙𝑎𝑦 == 0 then ⊲ Congestion in phantom queues

10: 𝑀𝐷𝑠𝑐𝑎𝑙𝑒 = 𝑀𝐷𝑠𝑐𝑎𝑙𝑒 × 0.3 ⊲ Gentle Reduction

11: else ⊲ Congestion in physical queues

12: 𝑀𝐷𝑠𝑐𝑎𝑙𝑒 = 1

13: end if
14: 𝑐𝑤𝑛𝑑 = 𝑐𝑤𝑛𝑑 × (1 −𝑀𝐷𝐸𝐶𝑁 ×𝑀𝐷𝑠𝑐𝑎𝑙𝑒)
15: end if
16: end procedure
17:

18: procedure OnQA
19: if 𝑏𝑦𝑡𝑒𝑠_𝑎𝑐𝑘𝑒𝑑_𝑖𝑛_𝑞𝑎 < 𝑐𝑤𝑛𝑑 × 𝛽 then ⊲ Very congested network (QA)

20: 𝑐𝑤𝑛𝑑 = 𝑏𝑦𝑡𝑒𝑠_𝑎𝑐𝑘𝑒𝑑_𝑖𝑛_𝑞𝑎

21: end if
22: end procedure

4.1.1 Additive Increase – Multiplicative Decrease (AIMD). When an

ACK packet arrives and it is not ECN marked, UnoCC increases the

congestion window (𝑐𝑤𝑛𝑑) by 𝛼 × 𝑏𝑦𝑡𝑒𝑠_𝑎𝑐𝑘𝑒𝑑

𝑐𝑤𝑛𝑑
. 𝛼 is the AI factor

and is set as a fraction of BDP, e.g., 0.001×𝐵𝐷𝑃 for our simulations.

Thus, after one RTT in an uncongested network, 𝑐𝑤𝑛𝑑 increases

by 𝛼 . Note that 𝛼 should be scaled depending on the queue size and

the degree of incast that a network can support without losses in

the steady state. Unlike AI, that is applied per ACK, MD is applied

at most once per epoch. Specifically, upon receiving the first ACK of

the flow, UnoCC stores an epoch activation time (T𝑒𝑝𝑜𝑐ℎ) for that
flow which is initialized to the time of the ACK arrival. Additionally,

when a packet is being sent/re-sent, UnoCC stores its send/re-send

time (T𝑝𝑘𝑡). An epoch terminates whenwe receive an ACK for a data

packet whose T𝑝𝑘𝑡 is ≥ T𝑒𝑝𝑜𝑐ℎ . Upon epoch termination, UnoCC

increases T𝑒𝑝𝑜𝑐ℎ by 𝑒𝑝𝑜𝑐ℎ_𝑝𝑒𝑟𝑖𝑜𝑑 , i.e., a time span proportional to

the packet’s RTT, and re-activates the epoch. Using this approach,

we ensure that enough packets are received before deciding to

apply MD which gives us better grasp of the network’s condition.

UnoCC considers an epoch period as congested if any packets has

been ECN-marked during the epoch. When applying MD, UnoCC

computes theMD factor (i.e.,𝑀𝐷𝐸𝐶𝑁) as E×(4×𝐾
𝐾+𝐵𝐷𝑃). E represents

the exponential weighted moving average (EWMA) of the fraction

of ECN-marked packets across epochs, and 𝐾 is a user-set constant

that indicates the extent of UnoCC’s reaction to congested epochs.

We select UnoCC’s AI andMD factors (i.e.,𝛼 and𝑀𝐷𝐸𝐶𝑁 , respec-

tively) similar to Gemini [63] to achieve guaranteed convergence

to fairness. However, Gemini experiences slow convergence time

due to reacting to congestion signals at different granularities for

inter- and intra-DC traffic (§2). Through extensive empirical ex-

perimentation, we found that by reacting to congestion signals at

the same granularity for both inter- and intra-DC flows, we can

better capture congestion events inside and across datacenters and,

thus, considerably improve the speed of convergence to the fair

bandwidth share. To this end, we use the same 𝑒𝑝𝑜𝑐ℎ_𝑝𝑒𝑟𝑖𝑜𝑑 , set

based on intra-DC RTT, for both inter- and intra-DC flows. In §5,

we quantitatively show that, despite having similar AI and MD

factors, UnoCC achieves much faster convergence to fairness than

Gemini [63].

Finally, since phantom queues have slower drain rates than phys-

ical queues, they can signal the sender to slow down more than

needed and for too long. To avoid this, if UnoCC detects that the

physical queues are empty and phantom queues are congested, i.e.,
packets are ECN marked but packet delays indicate no congestion,

it employs a gentler reduction (𝑀𝐷𝑠𝑐𝑎𝑙𝑒) by scaling down𝑀𝐷𝐸𝐶𝑁 .

4.1.2 Quick Adapt (QA). Events such as the arrival of new flows

or incast can potentially create extreme network congestion. Solely

relying on MD for resolving such congestion events is slow and

can significantly hurt latency. To avoid this, UnoCC deploys the

QA mechanism. Specifically, once every RTT, UnoCC evaluates if

the network is extremely congested by checking if the number of

ACKed bytes is considerably low, i.e., less than 𝑐𝑤𝑛𝑑 × 𝛽 (𝛽 is the

user-set QA ratio). If the network is deemed as extremely congested,

the 𝑐𝑤𝑛𝑑 is sharply decreased to the number of bytes ACKed dur-

ing the QA period to quickly match the network’s instantaneous

capacity. To avoid over-reacting to congestion, after triggering QA,

UnoCC skips one RTT without triggering any QAs or MDs.

4.1.3 Phantom Queues. As discussed in §2, efficiently setting ECN

marking thresholds for a mixture of inter- and intra-DC traffic is

challenging as intra- and inter-DC switch buffer capacities differ,

and using only shallow buffers everywhere can also lead to oscilla-

tions for modern CCs due to the large inter-DC BDPs. To address

1200

Uno: A One-Stop Solution for Inter- and Intra-Data Center Congestion Control and Reliable Connectivity SC ’25, November 16–21, 2025, St Louis, MO, USA

this, we use phantom queues [10] in conjunction with UnoCC. The

phantom queue occupancy increases every time a new packet is

enqueued in the physical queue and decreases at a constant rate

(i.e., draining rate), which is a fraction of the link bandwidth. Note

that a phantom queue is easily implementable using a counter that

keeps track of its occupancy.

Using phantom queues enables us to correctly mark packets

with ECN signals regardless of the physical queue’s capacity. As

illustrated in §2, by properly setting the draining rate of the phan-

tom queues, we practically experience zero queuing at the physical

queues as long as the network is at its steady state. Specifically, in

steady state, as the phantom queues are drained at a lower speed

than the physical queues, the physical queues become empty before

the phantom queue occupancy reaches zero. This is important as it

gives extra bandwidth headroom, especially for small and latency-

sensitive intra-DC flows. Using phantom queues can potentially

penalize large throughput-intensive flows. However, our experi-

ment results show that by setting the phantom queue’s draining

rate slightly lower than physical queues, e.g., 10% lower, we avoid

victimizing large flows while keeping the benefiting small flows
3
.

4.2 UnoRC
As shown in Figure 7, UnoRC has two components: an erasure

coding component to enhance reliability, especially under failure,

and a simple but effective sub-flow level load balancer (UnoLB).

UnoRC
Latency-bound

messages
The inter-DC RTT is

high

Subflow Routing (UnoLB) with Erasure Coding (EC)

DC1 DC2

Data1

Data2

Data3

Parity4

Packets go on
different paths

Sender Receiver
Receiver can
decode message
even with failures

A single
timeout/retx is bad

Sender
removes
bad path

Figure 7: UnoRC’s design.

Erasure Coding (EC): For reliability, each inter-DC message is

divided into blocks of 𝑛 packets, with 𝑥 data and 𝑦 parity packets.

A block can be reconstructed if at most 𝑦 out of 𝑛 packets are lost.

Upon receiving the first packet of a block, the receiver starts a timer

set to the estimated maximum queuing and transmission delay. If

the timer expires before enough packets arrive, a NACK is sent to

the sender requesting retransmission of the missing block. UnoRC

applies erasure coding only to inter-DC traffic due to long recovery

delays. While EC adds fixed overhead (e.g., 20%), it reduces packet

loss and improves completion times under failure and congestion

events, which is crucial in latency-bound scenarios (§5).

Load Balancing (UnoLB): Our load balancing scheme uses 𝑛

subflows and each subflow gets assigned its own path (either via

source-based assignment or by changing the source port value for

ECMP hashing). By itself, this simple action (somewhat similar to

MPTCP [27]) vastly improves the performance due to a decrease in

hash collisions. To integrate UnoLB with the reliability aspect (i.e.,

3
This result aligns with prior work on phantom queues [10].

Algorithm 2 Pseudocode for UnoLB

1: procedure onSend(packet)
2: 𝑝𝑎𝑐𝑘𝑒𝑡 [header.source_port] ← 𝑠𝑢𝑏𝑓 𝑙𝑜𝑤 [index]
3: index← (index + 1) mod total_subflows
4: end procedure
5: procedure onNackOrTimeout(packet)
6: if (𝑛𝑜𝑤 () − 𝑙𝑎𝑠𝑡_𝑟𝑒𝑟𝑜𝑢𝑡𝑒) > 𝑏𝑎𝑠𝑒_𝑟𝑡𝑡 then
7: update_subflow(packet)
8: 𝑙𝑎𝑠𝑡_𝑟𝑒𝑟𝑜𝑢𝑡𝑒 ← 𝑛𝑜𝑤 ()
9: end if
10: end procedure

erasure coding), we spread the packets of a block across 𝑛 subflows.

Doing so increases the resilience to link failures. Moreover, UnoRC

switches from bad paths when it detects extreme congestion on

them. In particular, upon receiving a NACK (indicating an unre-

coverable block) or when a sender timeout occurs (possibly due to

lost NACKs caused by failures or corruption), UnoRC re-routes the

affected flows by randomly selecting a subflow that has recently

received ACKs, thereby reducing the likelihood of switching to

another congested or failed path. Algorithm 2 presents UnoRC’s

logic.

5 Performance Evaluation
We use htsim, a packet-level network simulator [33], to evaluate

Uno across distinct workloads and traffic patterns. Our key findings

are summarized below:

• Uno improves the average and tail latency compared to the

state-of-the-art solutions. Specifically, under 40% load and a

mixture of inter-DC and intra-DC flows, Uno improves the

99
𝑡ℎ

percentile FCT by 1.4× compared to both MPRDMA+BBR

and Gemini.

• UnoCC provides fast convergence to fairness. Particularly,

with UnoCC under incast events created from various combi-

nations of intra- and inter-DC flows, all flows quickly converge

to their fair bandwidth share.

• UnoRC (i.e., UnoLB + EC) further improves the performance

under several failure scenarios by up to 3× compared to Uno

without erasure coding and 2× and 6× compared to RPS and

PLB, respectively.

5.1 Simulation Setup
Topology. We simulate two 8-ary fat-tree datacenters [5], each

consisting of 16 core switches and 8 pods with 4 aggregate and 4

edge switches. Each edge switch is connected to 4 servers. The dat-

acenters are connected through two border switches that are inter-

connected through eight links. Also, every core switch is connected

to a border switch through eight links. Unless stated otherwise, we

exploit 100 Gbps links for all our interconnects and set the switch

buffer capacities to 1 MiB per port.

Microbenchmarks. We first run microbenchmark experiments

similar to those performed in prior works [63] to demonstrate the

fairness advantages of Uno. Two types of traffic are evaluated: 1)

incast traffic originating from different sources and 2) permutation

traffic with randomly selected source and destination nodes.

Realistic Workload. The characteristics of intra-DC traffic dif-

fer from traffic spanning multiple datacenter networks [58, 65].

1201

SC ’25, November 16–21, 2025, St Louis, MO, USA Bonato, Abdous, et al.

Inter-DC flow
Intra-DC flow

Ideal completion time

Ideal completion time
with phantom slowdown

 Uno Fairness

 Uno Comparisons

Ideal fair sending rate

Figure 8: The top plot showcases the fairness of Uno while the bottom plot shows the performance against other algorithms. The title on top
of each plot indicates how many inter- and intra-DC flows take part in the incast.

Therefore, we simulate different workloads within and across dat-

acenters. Similar to [63], we use the flow size distributions of

Google’s web search [9] for generating intra-DC traffic. To gener-

ate inter-DC traffic, we exploit the flow size distribution recorded

between two datacenters in Alibaba’s regional WAN [65]. Unless

stated otherwise, the flows’ arrival rates are generated based on

an exponential distribution, and the rates are scaled to achieve

a desired network load. Flow source and destination servers are

selected using a uniform random distribution, similar to previous

works [9, 63, 65]. The ratio of datacenter to WAN traffic is set to

4:1.

We also use an AI training workload for the inter-DC traffic

in one of our experiments. Particularly, we assume a data parallel

training strategy [42, 57] across the two datacenters, where each

datacenter has at least one replica of the model being trained. After

computing the gradients during the backward pass of each iteration,

an Allreduce (or separate Reducescatter and Allgather) collective

operation is initiated to synchronize the gradients across the data-

centers. Our experiments simulate inter-datacenter training of the

Llama 70B model and the parallelization strategy in its technical

report [32], which generates periodic traffic bursts of approximately

70-500 MiB per iteration [50]. The total number of send operations

depends on the number of Allreduce groups in the collective.

Evaluation metrics.We measure the mean and tail (99
𝑡ℎ

per-

centile) Flow Completion Time (FCT) as our main evaluation metric.

We also report metrics such as queue occupancy and sending rate.

Baseline state-of-the-art (SOTA) approaches.We compare

Uno against two major baselines: 1) MPRDMA+BBR ([47]+[20]):

Widely deployed for enterprise WAN, BBR targets accurate RTT

and bandwidth estimation to maximize throughput andminimize la-

tency. Since BBR is only used for inter-DC communication, we com-

bine it with MPRDMA, an ECN-based congestion control scheme,

for managing intra-DC communication. 2) Gemini [63]: Similar

to UnoCC, Gemini is a congestion control protocol designed for

both intra-DC and inter-DC communication that exploits ECN and

RTT to detect intra-DC and inter-DC congestion, respectively.
4
To

evaluate UnoRC, we evaluate it against different routing schemes

such as Random Packet Spraying (RPS) [24] and PLB [56].

Parameter Default Value

𝛼 (UnoCC’s AI factor) 0.001 × 𝐵𝐷𝑃
𝛽 (UnoCC’s QA factor) 0.5

K (UnoCC’s MD constant)
1

7
×intra-DC BDP

Intra-DC RTT 14𝜇𝑠

Inter-DC RTT 2𝑚𝑠

Phantom queue drain rate 0.9×physical queue drain rate

Table 2: Parameter table.

Parameter settings. To mark ECN, we use Random Early De-

tection [45]. Specifically, the packets are never ECN marked as

long as the destination queue occupancy is less than the minimum

ECN threshold (i.e., MinECNThresh) and always marked when the

occupancy is more than the maximum ECN threshold (i.e., MaxEC-
NThresh). Otherwise, the probability of marking packets increases

linearly. MinECNThresh and MaxECNThresh are set to 25% and 75%

of queue capacity. For Uno, we set 𝛼 , 𝛽 , and 𝐾 to 0.1% of the BDP,

0.5, and
1

7
×intra-DC BDP, respectively. The phantom queues drain

at 90% of the line rate. Unless stated otherwise, MTU, intra-DC RTT,

and inter-DC RTT are set to 4096 B, 14𝜇𝑠 , and 2𝑚𝑠 , respectively

[63]. Table 2 summarizes the main parameters of our experiments.

5.2 Simulation results
5.2.1 Micro-benchmarks. As the first experiment, we simulate Uno

under intra-DC incast, inter-DC incast, and a mixture of the two. In

all scenarios, we generate a total of eight 1 GiB flows. Also, we use

packet spraying for all schemes as load balancing has a negligible

impact under receiver-side incast. In Figure 8, we present Uno’s

4
Annulus [59], which works on top of other schemes such as BBR, could also be used

to enhance the performance of Uno under oversubscribed topologies. However, we

leave this add-on for future work.

1202

Uno: A One-Stop Solution for Inter- and Intra-Data Center Congestion Control and Reliable Connectivity SC ’25, November 16–21, 2025, St Louis, MO, USA

Avg FCT P99 FCT
0

5

10

15

20

Co
m

pl
et

io
n

Ti
m

e
(m

s)

1.7

4.4

1.1 1.9

4.3

20.3

3.6

16.2

Uno+ECMP
Uno
Gemini
MPRDMA+BBR

Avg FCT P99 FCT
0

5

10

15

20

Co
m

pl
et

io
n

Ti
m

e
(m

s)

5.1

15.8

5.6

11.611.5

21.8

9.2

19.1
8 DC-to-DC links

128 DC-to-DC links

Figure 9: Showcasing results with a permutation workload.

fairness by plotting the sending rate of the flows involved in the

incast and evaluate its performance against other baselines. Our

findings show that Uno outperforms or matches the performance of

the other algorithms in all three scenarios and achieves near-ideal

latency. Moreover, using Uno, in all scenarios, the send rates of

inter- and intra-DC flows quickly converge to their fair bandwidth

share, highlighting Uno’s fast convergence to fairness.

We then consider a permutation scenario where each sender is

sending to another randomly selected node (within the same DC or

cross DCs). Since this could result in a lot of inter-DC communica-

tion (easily overwhelming the eight inter-DC links), we showcase

two scenarios: one where the topology is as-is with 800Gbps of

inter-DC bandwidth and another scenario where the inter-DC links

are fully provisioned. Here we showcase Uno with ECMP and Uno

with our custom load balancing solution (UnoLB) as part of UnoRC.

In Figure 9, we show the two results. Under the same ECMP load

balancing assumption, Uno is still significantly better than the al-

ternatives in both scenarios. The gap between Uno and the other

approaches further increases with UnoLB. As expected, average

FCTs are higher when fewer links connect the DCs.

5.2.2 Realistic workloads. To test Uno against realistic workloads,

we generate intra- and inter-DC traffic using Google’s web search

[9] and Alibaba’s WAN [65] traffic distributions, respectively, and

compare Uno+ECMP (i.e., UnoCC deployed beside ECMP for load

balancing) and Uno (i.e., UnoCC+UnoRC) against other baselines.
Figure 10 presents the results. We observe that, compared to Gemini

and MPRDMA+BBR, UnoCC reduces both average and tail latency

of inter-DC flows but slightly increases the latency of intra-DC web

search flows. This is because phantom queues’ drain rates are lower

than physical queues which can occasionally hurt the latency of

intra-DC flows. However, despite marginally increasing the latency

of intra-DC flows, UnoCC manages to improve the overall latency

by providing better congestionmanagement and faster convergence

to fair bandwidth share, e.g., under 40% load, UnoCC improves

mean latency by 30% and 37% compared to MPRDMA+BBR and

Gemini, respectively. Additionally, by achieving balanced load and

loss resiliency on top of UnoCC, Uno manages to reduce the latency

of both intra- and inter-DC flows compared to other baselines. For

example, compared to MPRDMA+BBR and Gemini under 40% load,

Uno decreases the tail FCT by 4.4× and 5.3× for intra-DC flows and

by 1.7× and 2.1× for inter-DC flows, respectively.

We also evaluate Uno against different inter-DC propagation

delays. To this end, we repeat the previous experiments with 40%

network load and gradually increase the propagation delay of inter-

DC links. Figure 11 reports the FCT slowdown ratios of distinct

schemes as we increase the ratio of inter-DC minimum RTT to

intra-DC minimum RTT from 8 to 512 by increasing the inter-DC

propagation delay (intra-DC minimum RTT = 14𝜇𝑠). We observe

that, when the gap between intra- and inter-DC RTT is small, Uno

is slightly outperformed by MPRDMA+BBR due to the phantom

queue slowdown. However, as the RTT ratio increases, and gets

closer to ratios observed in today’s networks (e.g., Figure 1), Uno
significantly outperformsMPRDMA+BBR and Gemini. In particular,

when the RTT ratio is 512, Uno’s tail FCT slowdown is 5× lower

than MPRDMA+BBR and Gemini. This shows that the existing

solutions fall short in efficiently handling the big gap between

intra- and inter-DC delays, while Uno is well-designed for it.

Lastly, we evaluate Uno’s performance under realistic workloads

and distinct inter- and intra-DC queue sizes. We re-run experiments

under 40% load using shallow- and deep-buffered switches inside

and across datacenters, respectively. Particularly, we set intra- and

inter-DC queue sizes to ≈ 175 KiB (i.e., intra-DC BDP) and ≈ 2.2

MiB (i.e., 0.1× inter-DC BDP) per port. Figure 12 shows average and

tail FCTs. Consistent with prior results (i.e., Figure 10), Uno+ECMP

lowers overall FCT by reducing inter-DC completion times with

only slight intra-DC latency increase, while Uno improves both:

compared to Gemini, tail FCT drops by 3.1× (intra) and 1.7× (inter);
versus MPRDMA+BBR, it drops by 3.6× (intra) and 1.8× (inter).

5.2.3 Failure Scenarios. We now move to the evaluation of the reli-

ability (RC) aspect of Uno. To do so, we evaluate Uno’s performance

under different failure scenarios. Since we have already evaluated

the effectiveness of UnoCC on its own against other state-of-the-art

algorithms, we now focus only on different variants of Uno when

it comes to load balancing and reliability and use UnoCC as con-

gestion control for all experiments. In particular, we compare three

different state-of-the-art load balancing schemes: packet spraying

[24], PLB [56] and UnoLB. We exclude ECMP since we already

evaluated the superiority of multipathing schemes in the previous

section and because ECMP is oblivious to network failures.

For erasure coding (EC), we note that the choice of the correct

block size and number of parity packets depends on the initial

assumptions of the network. Higher failure rates require more

redundancy but also introduce more overhead. Although there is

no single one-size-fits-all answer, we ran several experiments and

decided to use a (8, 2) scheme, i.e., 10 packets in a group with 8 data

packets and 2 parity packets.

The first experiment that we run consists of failing one of the

eight border links while simulating latency-sensitive 5MiB flows

between two datacenters that can theoretically saturate all the

inter-DC bandwidth. Since a single run can be heavily influenced

by the initial path selection, we re-run every experiment 100 times

to reduce biases and use violin plots to show detailed statistics

across runs. Figure 13 A○ presents the results. We observe that

Uno outperforms both spraying and PLB with and without EC. This

is due to Uno’s ability to adaptively avoid problematic links and

intelligently distribute packets within the same block.

Then, we move to a different failure scenario and simulate ran-

dom loss events based on our real measurements from Table 1. We

implement and simulate the full failure logic comprehensive of the

correlation between different failure events. In Figure 13 B○, we

show the results for this scenario considering a single flow across

1203

SC ’25, November 16–21, 2025, St Louis, MO, USA Bonato, Abdous, et al.

40% Load 60% Load 80% Load
Load Conditions

0

1

2

3

Av
er

ag
e

FC
T

(m
s)

1.7 1.9 2.11.9 1.9 1.9

2.8 2.9 2.9
2.5 2.6 2.6

40% Load 60% Load 80% Load
Load Conditions

0

20

40

60

Av
er

ag
e

FC
T

(μ
s)

40
49

59

19 20 21

35
46

52

38
44

56

40% Load 60% Load 80% Load
Load Conditions

0

5

10

15

Av
er

ag
e

FC
T

(m
s)

8.6 9.0 10.29.6 9.6 9.8

13.7 13.7 14.1
12.3 12.6 13.1

40% Load 60% Load 80% Load
Load Conditions

0

10

20

30

P9
9

FC
T

(m
s)

20
24 26

16
18 19

26 26 2725 27 28

40% Load 60% Load 80% Load
Load Conditions

0

500

1000

P9
9

FC
T

(μ
s)

640

879
1019

154 161 184

527

862 883

557
711

999

40% Load 60% Load 80% Load
Load Conditions

0

20

40

P9
9

FC
T

(m
s)

30 32 33

18 21 22

37 39
44

30 33 35

 All Flow Intra-DC Flows Inter-DC Flows

Figure 10: Uno is superior to other baselines under distinct network loads.

0

2

4

Av
g.

 F
CT

 S
lo

wd
ow

n

3.4
2.9

2.4 2.3
3.3

2.5
1.9 1.6

4.4
3.9

2.9 3.03.2 2.9 2.9 3.0

Uno+ECMP
Uno

Gemini
MPRDMA+BBR

8 32 128 512
Inter/Intra RTT Ratio

0

20

40

p9
9

FC
T

Sl
ow

do
wn

26
21

28 28
24

14
8 6

41
37

30 30
24

19

35
30

Figure 11: Uno improves latency when there exists a significant gap
between intra- and inter-DC RTTs.

10−1

100

101

Av
er

ag
e

FC
T

(m
s)

1.6

8.7

0.04

1.7

9.2

0.02

2.6

13.2

0.04

2.4

12.0

0.04

All Flows Inter-DC Flows Intra-DC Flows

100

101

P9
9

FC
T

(m
s) 19 26

0.54

15 17

0.16

25 29

0.51

25 30

0.60Uno+ECMP
Uno

Gemini
MPRDMA+BBR

Figure 12: Uno is superior to MPRDMA+BBR and Gemini even
when the queue capacities inside and across datacenters differ.

datacenters. In this case, blocks are only dropped in the unlikely

event that three or more packets are dropped within a block. What

we observe is that Uno is mostly matching packet spraying, as ex-

pected, and outperforming PLB both with and without EC. This is

because PLB sticks to one path for a given flow, and when a link

becomes temporarily flaky, it negatively affects the entire block,

resulting in a higher runtime for the worst-case scenario.

Finally, in Figure 13 C○, we simulate the training strategy de-

scribed in §5.1. In this experiment, we simulate both link failures

and random drops. We generate 100 training iterations and focus

on the inter-DC communication. We report the ratio of the mea-

sured Allreduce collective runtime per training iteration to the

ideal runtime. We observe that Uno consistently outperforms other

baselines both with and without EC. Specifically, with EC, Uno

performs over 2× better than the second best algorithm and only

30% slower than the ideal completion time that assumes no ECMP

collisions or random drops.

6 Discussion
Leveraging modern datacenter congestion control for inter-
DC traffic. Using MPRDMA+BBR, we show the drawbacks of sep-

arating intra- and inter-DC control loops. While alternatives like

HPCC [43] and PowerTCP [3] exist, they too suffer from fairness

issues due to this separation. Unfortunately, most SOTA intra-DC

congestion control protocols, e.g., [9, 11, 33, 41, 43, 47], rely on

fast RTT feedback and specialized switch support (e.g., INT and

packet trimming), making them impractical across inter-DC envi-

ronments. Additionally, protocols like PowerTCP and HPCC use

single-pathing, limiting their ability to balance load. In contrast,

Uno applies congestion control uniformly across intra- and inter-

DC traffic, relies on widely supported ECN [9, 44], and employs

multi-pathing to achieve low latency, high reliability, and fairness.

Hardware implementation. While we showcase Uno’s po-

tential in simulations, we design it with hardware feasibility in

mind:

UnoCC’s key operations (i.e.,AIMDandQA) are easily deployable

in the Linux kernel, similar to other widely deployed protocols like

TCP/DCTCP. For the congestion signal, UnoCC only uses ECN,

which is commonly supported by today’s switches [9, 44]. Phantom

queues, already supported by several vendors [19, 31] (such as in

1204

Uno: A One-Stop Solution for Inter- and Intra-Data Center Congestion Control and Reliable Connectivity SC ’25, November 16–21, 2025, St Louis, MO, USA

Sp
ray

ing

Sp
ray

ing
+EC

Uno
LB

Uno
LB

+EC PLB

PLB
+EC

0

2

4

Al
lR

ed
uc

e
Ru

nt
im

e
Ov

er
 Id

ea
l T

im
e

Sp
ray

ing

Sp
ray

ing
+EC

Uno
LB

Uno
LB

+EC PLB

PLB
+EC

10

20

FC
T

(m
s)

Sp
ray

ing

Sp
ray

ing
+EC

Uno
LB

Uno
LB

+EC PLB

PLB
+EC

5

10

15

20

FC
T

(m
s)Max

Min

 Link Failure Random Drops

P99
Mean

 Random Drops + Link Failure

A B CMicroBenchmark MicroBenchmark AllReduce AI Training

2x improvement
over second best

UnoLB+EC is resilient
to random drops

Figure 13: Uno’s performance under distinct failure scenarios and different workloads.

Cisco Nexus 5548P [1]) and implementable with simple packet-

increment/decrement counters, are also easily deployable on most

switches. Additionally, Uno uses hardware pacing for congestion

control, which is commonly available at the sender NIC [10, 41, 59].

UnoRC is deployable as software shim layers: the sender inserts

parity packets and the receiver decodes once enough packets arrive,

using a coarse software timer suited for long-latency links. Finally,

Uno’s re-routing can be implemented by either changing the IPv6

flow-label [56] or updating the UDP source port as described in

Ultra Ethernet [34].

7 Related Work
Congestion within and across datacenters.Most of the existing

proposals on congestion control either focus on intra-DC networks

or inter-DC WANs and very little research has been done on si-

multaneously addressing intra- and inter-DC congestion [63]. To

address intra-DC congestion, existing body of work typically relies

on ECN [9, 10, 61, 66], delay [41, 51], or receiver-driven trans-

mission [21, 28, 33, 53]. WAN congestion management proposals

[12, 18, 20, 60], on the other hand, typically use delay to detect

WAN congestion due to the limited congestion detection support

from WAN switches. Gemini [63] is among the first proposals that

tries to bring inter- and intra-DC congestion control together as

a system by using ECN and delay to detect intra- and inter-DC

congestion, respectively. However, as presented in §5, Gemini suf-

fers slow convergence to bandwidth fairness. Annulus [59] tries

to address congestion near source but does not effectively han-

dle congestion that occurs far from the source and closer to the

destination. Moreover, Annulus works on top of other protocols,

thus not a standalone solution on its own. Uno, however, acts as

an effective system for both intra- and inter-DC environments by

ensuring fast reaction to congestion, bandwidth fairness, and loss

resiliency. HULL [10] and LGC-ShQ [22] have tried using phantom

queues but limited to the datacenter networks.

Addressing reliability and load balancing. Throughout the
years, many protocols have been proposed for load balancing inside

datacenters, spanning across different granularity: per flow, per sub-

flow, or per packet. Protocols such as ECMP, Hedera [6], MicroTE

[14], Flowcut [17] work on per-flow level but they either suffer

from hash collision or require complex global controllers. Solutions

working on sub-flow level load balancing try to mitigate the above

issues. FlowBender [39], PLB [56], CONGA [8] significantly im-

prove routing performance over ECMP. However, they can still be

prone to collisions since they use one given path at a time or require

specialized hardware as is the case of CONGA. Finally, packet-level

load balancers, such as RPS [24], Drill [30], and REPS [16], provide

the best absolute performance but require out-of-order support

at the receiver and complicate loss detection. UnoLB tries to get

the best of both worlds by using multiple sub-flow at any given

time (similar to MPTCP [27]), but also by adaptively re-routing

flows away from congested paths. This ensures good load balanc-

ing performance while limiting the amount of out-of-order packets.

Besides load balancing, erasure coding also improves loss resiliency.

Specifically, erasure coding enhances data reliability by splitting

the data into fragments and adding strategic redundancy, allowing

recovery even with some failures [46, 49, 52]. In Cloudburst [64],

the idea of multi-pathing with erasure coding was explored but

focusing on intra-DC communication.

8 Conclusion
Simultaneously handling congestion both inside and across dat-

acenters is challenging due to the huge gap between intra- and

inter-DC propagation delays. To address this, we proposed Uno, a

unified system for efficient DC communication with two compo-

nents: (1) UnoCC, a congestion control scheme ensuring fairness

and fast reaction, and (2) UnoRC, a reliable routing mechanism com-

bining subflow-level load balancing and erasure coding. Through

extensive simulations, we showed that Uno improves latency and

fairness compared to the state-of-the-art solutions. Moreover, we

illustrated the effectiveness of Uno in ensuring loss resiliency when

encountering failure and against different load balancers.

Acknowledgments
This project was funded by the NSF CNS NeTS grant (No. 2313164),

Sapienza University Grants ADAGIO and D2QNeT (Bando per la

ricerca di Ateneo 2023 and 2024), and the European Research Coun-

cil (ERC) under the European Union’s Horizon 2020 research and

innovation program (grant agreement PSAP, No. 101002047). We

also thank the Swiss National Supercomputing Center (CSCS) for

providing the computational resources used in this work. The au-

thors used ChatGPT to only assist with editing and quality control

throughout this manuscript (ideas and content remain original).

1205

SC ’25, November 16–21, 2025, St Louis, MO, USA Bonato, Abdous, et al.

References
[1] 2010. Cisco Nexus 5548P Switch Architecture. https://www.cisco.com/c/en/us/

products/ collateral/ switches/nexus-5548p-switch/white_paper_c11-622479.html.
[2] 2024. Broadcom Trident4. https://www.broadcom.com/products/ethernet-

connectivity/ switching/ strataxgs/bcm56880-series.
[3] Vamsi Addanki, Oliver Michel, and Stefan Schmid. 2022. PowerTCP: Pushing the

Performance Limits of Datacenter Networks. In NSDI.
[4] Marcos K Aguilera, Ramaprabhu Janakiraman, and Lihao Xu. 2005. On the

erasure recoverability of MDS codes under concurrent updates. In IEEE ISIT.
[5] Mohammad Al-Fares, Alexander Loukissas, and Amin Vahdat. 2008. A scal-

able, commodity data center network architecture. ACM SIGCOMM computer
communication review (2008).

[6] Mohammad Al-Fares, Sivasankar Radhakrishnan, Barath Raghavan, Nelson

Huang, Amin Vahdat, et al. 2010. Hedera: dynamic flow scheduling for data

center networks.. In NSDI.
[7] Mohammad Alizadeh, Berk Atikoglu, Abdul Kabbani, Ashvin Lakshmikantha,

Rong Pan, Balaji Prabhakar, and Mick Seaman. 2008. Data center transport mech-

anisms: Congestion control theory and IEEE standardization. In IEEE Allerton
Conference on Communication, Control, and Computing.

[8] Mohammad Alizadeh, Tom Edsall, Sarang Dharmapurikar, Ramanan

Vaidyanathan, Kevin Chu, Andy Fingerhut, Vinh The Lam, Francis Matus, Rong

Pan, Navindra Yadav, et al. 2014. CONGA: Distributed congestion-aware load

balancing for datacenters. In SIGCOMM.

[9] MohammadAlizadeh, Albert Greenberg, David AMaltz, Jitendra Padhye, Parveen

Patel, Balaji Prabhakar, Sudipta Sengupta, and Murari Sridharan. 2010. Data

center tcp (dctcp). In SIGCOMM.

[10] Mohammad Alizadeh, Abdul Kabbani, Tom Edsall, Balaji Prabhakar, Amin Vahdat,

and Masato Yasuda. 2012. Less is more: Trading a little bandwidth for {Ultra-
Low} latency in the data center. In NSDI.

[11] Serhat Arslan, Yuliang Li, Gautam Kumar, and Nandita Dukkipati. 2023. Bolt:Sub-

RTT congestion control for Ultra-Low latency. In NSDI.
[12] Venkat Arun and Hari Balakrishnan. 2018. Copa: Practical {Delay-Based} con-

gestion control for the internet. In NSDI.
[13] Wei Bai, Kai Chen, Shuihai Hu, Kun Tan, and Yongqiang Xiong. 2017. Conges-

tion control for high-speed extremely shallow-buffered datacenter networks. In

APNET.
[14] Theophilus Benson, Ashok Anand, Aditya Akella, and Ming Zhang. 2011. Mi-

croTE: Fine grained traffic engineering for data centers. In CoNEXT.
[15] Tommaso Bonato, Abdul Kabbani, Daniele De Sensi, Rong Pan, Yanfang Le,

Costin Raiciu, Mark Handley, Timo Schneider, Nils Blach, Ahmad Ghalayini, et al.

2024. SMaRTT-REPS: Sender-based Marked Rapidly-adapting Trimmed & Timed

Transport with Recycled Entropies. arXiv e-prints (2024).
[16] Tommaso Bonato, Abdul Kabbani, Ahmad Ghalayini, Michael Papamichael, Mo-

hammad Dohadwala, Lukas Gianinazzi, Mikhail Khalilov, Elias Achermann,

Daniele De Sensi, and Torsten Hoefler. 2025. REPS: Recycled Entropy Packet

Spraying for Adaptive Load Balancing and Failure Mitigation. arXiv e-prints
(2025).

[17] Tommaso Bonato, Daniele De Sensi, Salvatore Di Girolamo, Abdulla Bataineh,

David Hewson, Duncan Roweth, and Torsten Hoefler. 2025. Flowcut Switch-

ing: High-Performance Adaptive Routing with In-Order Delivery Guarantees.

arXiv:2506.21406 [cs.NI] https://arxiv.org/abs/2506.21406

[18] Lawrence S Brakmo, Sean W O’malley, and Larry L Peterson. 1994. TCP Vegas:

New techniques for congestion detection and avoidance. In SIGCOMM.

[19] Broadcom. 2021. BCM88480 Traffic Management Architecture. (2021). https:

//docs.broadcom.com/doc/88480-DG1-PUB

[20] Neal Cardwell, Yuchung Cheng, C Stephen Gunn, Soheil Hassas Yeganeh, and

Van Jacobson. 2017. BBR: Congestion-based congestion control. Commun. ACM
(2017).

[21] Inho Cho, Keon Jang, and Dongsu Han. 2017. Credit-scheduled delay-bounded

congestion control for datacenters. In SIGCOMM.

[22] Kristjon Ciko, Peyman Teymoori, and Michael Welzl. 2022. LGC-ShQ: Datacen-

ter Congestion Control with Queueless Load-Based ECN Marking. SIGCOMM
Comput. Commun. Rev. 52, 4 (Dec. 2022), 2–11. doi:10.1145/3577929.3577931

[23] Daniele De Sensi, Tiziano De Matteis, Konstantin Taranov, Salvatore Di Girolamo,

Tobias Rahn, and Torsten Hoefler. 2022. Noise in the clouds: Influence of network

performance variability on application scalability. Proceedings of the ACM on
Measurement and Analysis of Computing Systems (2022).

[24] Advait Dixit, Pawan Prakash, Y Charlie Hu, and Ramana Rao Kompella. 2013.

On the impact of packet spraying in data center networks. In IEEE INFOCOM.

[25] Xiaodong Dong, Wenxin Li, Xiaobo Zhou, Keqiu Li, and Heng Qi. 2020. TINA: A

fair inter-datacenter transmission mechanism with deadline guarantee. In IEEE
INFOCOM.

[26] Nathan Farrington, Erik Rubow, and Amin Vahdat. 2009. Data center switch ar-

chitecture in the age of merchant silicon. In IEEE symposium on high performance
interconnects.

[27] Alan Ford, Costin Raiciu, Mark Handley, and Olivier Bonaventure. 2013. TCP
extensions for multipath operation with multiple addresses. Technical Report.

[28] Peter X Gao, Akshay Narayan, Gautam Kumar, Rachit Agarwal, Sylvia Ratnasamy,

and Scott Shenker. 2015. pHost: Distributed near-optimal datacenter transport

over commodity network fabric. In CoNEXT.
[29] Gemini Team. 2023. Gemini: A Family of Highly Capable Multimodal Mod-

els. arXiv e-prints, Article arXiv:2312.11805 (Dec. 2023), arXiv:2312.11805 pages.
doi:10.48550/arXiv.2312.11805 arXiv:2312.11805 [cs.CL]

[30] Soudeh Ghorbani, Zibin Yang, P Brighten Godfrey, Yashar Ganjali, and Amin

Firoozshahian. 2017. Drill: Micro load balancing for low-latency data center

networks. In SIGCOMM.

[31] Richard J. Gibbens and Frank P. Kelly. 1999. Distributed connection acceptance

control for a connectionless network. https://api.semanticscholar.org/CorpusID:

192826

[32] AaronGrattafiori, AbhimanyuDubey, Abhinav Jauhri, Abhinav Pandey, Abhishek

Kadian, Ahmad Al-Dahle, Aiesha Letman, Akhil Mathur, Alan Schelten, Alex

Vaughan, et al. 2024. The llama 3 herd of models. arXiv preprint (2024).
[33] Mark Handley, Costin Raiciu, Alexandru Agache, Andrei Voinescu, Andrew W.

Moore, Gianni Antichi, and Marcin Wójcik. 2017. Re-architecting datacenter

networks and stacks for low latency and high performance. In Proceedings of
the Conference of the ACM Special Interest Group on Data Communication (Los

Angeles, CA, USA) (SIGCOMM ’17). Association for Computing Machinery, New

York, NY, USA, 29–42. doi:10.1145/3098822.3098825

[34] Torsten Hoefler, Karen Schramm, Eric Spada, Keith Underwood, Cedell Alexander,

Bob Alverson, Paul Bottorff, Adrian Caulfield, Mark Handley, Cathy Huang,

Costin Raiciu, Abdul Kabbani, Eugene Opsasnick, Rong Pan, Adee Ran, and Rip

Sohan. 2025. Ultra Ethernet’s Design Principles and Architectural Innovations.

arXiv:2508.08906 [cs.NI] https://arxiv.org/abs/2508.08906

[35] Chi-Yao Hong, Srikanth Kandula, Ratul Mahajan, Ming Zhang, Vijay Gill, Mohan

Nanduri, and Roger Wattenhofer. 2013. Achieving high utilization with software-

driven WAN. In SIGCOMM.

[36] Chi-Yao Hong, Subhasree Mandal, Mohammad Al-Fares, Min Zhu, Richard Al-

imi, Chandan Bhagat, Sourabh Jain, Jay Kaimal, Shiyu Liang, Kirill Mendelev,

et al. 2018. B4 and after: managing hierarchy, partitioning, and asymmetry for

availability and scale in google’s software-defined WAN. In SIGCOMM.

[37] Sushant Jain, Alok Kumar, Subhasree Mandal, Joon Ong, Leon Poutievski, Arjun

Singh, Subbaiah Venkata, Jim Wanderer, Junlan Zhou, Min Zhu, et al. 2013. B4:

Experience with a globally-deployed software defined WAN. SIGCOMM (2013).

[38] Abdul Kabbani, Mohammad Alizadeh, Masato Yasuda, Rong Pan, and Balaji

Prabhakar. 2010. AF-QCN: Approximate fairness with quantized congestion noti-

fication for multi-tenanted data centers. In IEEE symposium on high performance
interconnects.

[39] Abdul Kabbani, Balajee Vamanan, Jahangir Hasan, and Fabien Duchene. 2014.

Flowbender: Flow-level adaptive routing for improved latency and throughput

in datacenter networks. In CoNEXT.
[40] Umesh Krishnaswamy, Rachee Singh, Paul Mattes, Paul-Andre C Bissonnette,

Nikolaj Bjørner, Zahira Nasrin, Sonal Kothari, Prabhakar Reddy, John Abeln,

Srikanth Kandula, et al. 2023. OneWAN is better than two: Unifying a split WAN

architecture. In NSDI.
[41] Gautam Kumar, Nandita Dukkipati, Keon Jang, HassanWassel, XianWu, Behnam

Montazeri, Yaogong Wang, Kevin Springborn, Christopher Alfeld, Mike Ryan,

David J. Wetherall, and Amin Vahdat. 2020. Swift: Delay is Simple and Effective

for Congestion Control in the Datacenter. In SIGCOMM.

[42] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,

Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala.

2020. PyTorch Distributed: Experiences on Accelerating Data Parallel Training.

arXiv:2006.15704 [cs.DC] https://arxiv.org/abs/2006.15704

[43] Yuliang Li, Rui Miao, Hongqiang Harry Liu, Yan Zhuang, Fei Feng, Lingbo Tang,

Zheng Cao, Ming Zhang, Frank Kelly, Mohammad Alizadeh, et al. 2019. HPCC:

High precision congestion control. In SIGCOMM.

[44] Hyoyoung Lim, Seonwoo Kim, Jackson Sippe, Junseon Kim, GregWhite, Chul-Ho

Lee, Eric Wustrow, Kyunghan Lee, Dirk Grunwald, and Sangtae Ha. 2022. A

Fresh Look at ECN Traversal in the Wild. arXiv preprint (2022).
[45] Dong Lin and Robert Morris. 1997. Dynamics of random early detection. In

SIGCOMM.

[46] Hongqiang Harry Liu, Srikanth Kandula, Ratul Mahajan, Ming Zhang, and David

Gelernter. 2014. Traffic engineering with forward fault correction. In SIGCOMM.

[47] Yuanwei Lu, Guo Chen, Bojie Li, Kun Tan, Yongqiang Xiong, Peng Cheng, Jian-

song Zhang, Enhong Chen, and Thomas Moscibroda. 2018. Multi-Path transport

for RDMA in datacenters. In NSDI.
[48] Shouxi Luo, Renyi Wang, and Huanlai Xing. 2024. Efficient inter-datacenter

ALLReduce with multiple trees. IEEE Transactions on Network Science and Engi-
neering (2024).

[49] Ratul Mahajan, Jitendra Padhye, Sharad Agarwal, and Brian Zill. 2012. High

performance vehicular connectivity with opportunistic erasure coding. InUSENIX
ATC.

[50] Paulius Micikevicius, Sharan Narang, Jonah Alben, Gregory Diamos, Erich

Elsen, David Garcia, Boris Ginsburg, Michael Houston, Oleksii Kuchaiev, Ganesh

Venkatesh, and HaoWu. 2018. Mixed Precision Training. arXiv:1710.03740 [cs.AI]

https://arxiv.org/abs/1710.03740

1206

https://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html
https://www.cisco.com/c/en/us/products/collateral/switches/nexus-5548p-switch/white_paper_c11-622479.html
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://www.broadcom.com/products/ethernet-connectivity/switching/strataxgs/bcm56880-series
https://arxiv.org/abs/2506.21406
https://arxiv.org/abs/2506.21406
https://docs.broadcom.com/doc/88480-DG1-PUB
https://docs.broadcom.com/doc/88480-DG1-PUB
https://doi.org/10.1145/3577929.3577931
https://doi.org/10.48550/arXiv.2312.11805
https://arxiv.org/abs/2312.11805
https://api.semanticscholar.org/CorpusID:192826
https://api.semanticscholar.org/CorpusID:192826
https://doi.org/10.1145/3098822.3098825
https://arxiv.org/abs/2508.08906
https://arxiv.org/abs/2508.08906
https://arxiv.org/abs/2006.15704
https://arxiv.org/abs/2006.15704
https://arxiv.org/abs/1710.03740
https://arxiv.org/abs/1710.03740

Uno: A One-Stop Solution for Inter- and Intra-Data Center Congestion Control and Reliable Connectivity SC ’25, November 16–21, 2025, St Louis, MO, USA

[51] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,

Monia Ghobadi, Amin Vahdat, Yaogong Wang, David Wetherall, and David Zats.

2015. TIMELY: RTT-based congestion control for the datacenter. SIGCOMM
(2015).

[52] Michael Mitzenmacher. 2004. Digital fountains: A survey and look forward. In

IEEE Information theory workshop.
[53] Behnam Montazeri, Yilong Li, Mohammad Alizadeh, and John Ousterhout. 2018.

Homa: A receiver-driven low-latency transport protocol using network priorities.

In SIGCOMM.

[54] OpenAI. 2025. Pre-Training GPT-4.5. https://www.youtube.com/watch?v=

6nJZopACRuQ. YouTube video, accessed on April 14, 2025.

[55] Qifan Pu, Ganesh Ananthanarayanan, Peter Bodik, Srikanth Kandula, Aditya

Akella, Paramvir Bahl, and Ion Stoica. 2015. Low latency geo-distributed data

analytics. ACM SIGCOMM Computer Communication Review (2015).

[56] Mubashir Adnan Qureshi, Yuchung Cheng, Qianwen Yin, Qiaobin Fu, Gautam

Kumar, Masoud Moshref, Junhua Yan, Van Jacobson, David Wetherall, and Abdul

Kabbani. 2022. PLB: congestion signals are simple and effective for network load

balancing. In SIGCOMM.

[57] Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. 2020. Zero:

Memory optimizations toward training trillion parameter models. In SC.
[58] Arjun Roy, Hongyi Zeng, Jasmeet Bagga, George Porter, and Alex C Snoeren.

2015. Inside the social network’s (datacenter) network. In SIGCOMM.

[59] Ahmed Saeed, Varun Gupta, Prateesh Goyal, Milad Sharif, Rong Pan, Mostafa

Ammar, Ellen Zegura, Keon Jang, Mohammad Alizadeh, Abdul Kabbani, et al.

2020. Annulus: A dual congestion control loop for datacenter and wan traffic

aggregates. In SIGCOMM.

[60] Kun Tan, Jingmin Song, Qian Zhang, and Murad Sridharan. 2006. A compound

TCP approach for high-speed and long distance networks. In IEEE INFOCOM.

[61] Balajee Vamanan, Jahangir Hasan, and TN Vijaykumar. 2012. Deadline-aware

datacenter tcp (d2tcp). ACM SIGCOMM Computer Communication Review (2012).

[62] Weitao Wang, Masoud Moshref, Yuliang Li, Gautam Kumar, T. S. Eugene Ng,

Neal Cardwell, and Nandita Dukkipati. 2023. Poseidon: An Efficient Congestion

Control using Deployable INT for Data Center Networks. https://www.usenix.

org/system/files/nsdi23-wang-weitao.pdf

[63] Gaoxiong Zeng, Wei Bai, Ge Chen, Kai Chen, Dongsu Han, Yibo Zhu, and Lei

Cui. 2019. Congestion Control for Cross-Datacenter Networks. In ICNP.
[64] Gaoxiong Zeng, Li Chen, Bairen Yi, and Kai Chen. 2022. Cutting tail latency in

commodity datacenters with cloudburst. In IEEE INFOCOM.

[65] Gaoxiong Zeng, Jianxin Qiu, Yifei Yuan, Hongqiang Liu, and Kai Chen. 2021.

FlashPass: Proactive Congestion Control for Shallow-buffered WAN. In ICNP.
[66] Yibo Zhu, Haggai Eran, Daniel Firestone, Chuanxiong Guo, Marina Lipshteyn,

Yehonatan Liron, Jitendra Padhye, Shachar Raindel, Mohamad Haj Yahia, and

Ming Zhang. 2015. Congestion control for large-scale RDMA deployments.

SIGCOMM (2015).

1207

https://www.youtube.com/watch?v=6nJZopACRuQ
https://www.youtube.com/watch?v=6nJZopACRuQ
https://www.usenix.org/system/files/nsdi23-wang-weitao.pdf
https://www.usenix.org/system/files/nsdi23-wang-weitao.pdf

SC ’25, November 16–21, 2025, St Louis, MO, USA Bonato, Abdous, et al.

Appendix: Artifact Description/Artifact Evaluation

Artifact Description (AD)

A Overview of Contributions and Artifacts
A.1 Paper’s Main Contributions
C1 We develop Uno, a framework that unifies inter- and intra-

datacenter communication from the perspective of conges-

tion control, load balancing, and reliability.

C2 We improve and extend the htsim simulator to support multiple

datacenters and implement our scheme in htsim and several

other state-of-the-art algorithms (Gemini, MPRDMA, BBR).

C3 We evaluate Uno against the state-of-the-art algorithms un-

der distinct workloads and traffic patterns, ranging from

microbenchmarks to realistic workloads. We also evaluate

Uno under a simple inter-DC AI workload. On top of that,

we implement several failure scenarios in htsim to investi-

gate Uno’s performance under different failure cases. Our

findings show that Uno is superior to existing proposals as

it achieves lower latency, better loss resiliency, and faster

convergence to flow-level fairness.

A.2 Computational Artifacts
Weprovide a GitHub repository (https://github.com/spcl/Uno_SC25.

git) for the code. We also provide a DOI link (https://doi.org/10.

5281/zenodo.15916080) where users can find both the source code

of the repository and a Docker container with everything already

set up.

Artifact ID Contributions Related

Supported Paper Elements

𝐴1 𝐶1-𝐶3 Figures 1,3,4,8-12

B Artifact Identification
B.1 Computational Artifact 𝐴1

Relation To Contributions
The artifact contains the code necessary to run the experiments

and extract the results. However, we manually enhanced the qual-

ity of certain plots, Figure 3 for example, for stylistic purposes in

post-production. Key results are still readable without those anno-

tations though. The file structure of the project is organized as the

following:

• sim/: contains the code for distinct key modules required

for the simulations, such as network topology, congestion

control schemes, load balancing paradigms, etc.

• plotting/: contains the Python scripts used for processing

the results and extracting information such as Flow Comple-

tion Times (FCTs).

• sc25_X.sh: These files are the shell scripts for installing the
required packages, running the experiments, and extracting

the results. Examples of such files are sc25_pkt_install.sh
and sc_fig10.sh.
• artifact_scripts/: These folder containsmost of the Python

scripts needed to reproduce the results. We note that these

need to be run from the root directory of the project.

• artifact_results/: When all simulation have run, the

artifact_results folder will contain a series of subfold-

ers for each figure of the paper. For example, after running

the sc25_fig1.sh script, the corresponding figures will be
available in artifact_results/fig1/.

Expected Results
The results should demonstrate that Uno achieves fairness more

quickly than existing proposals. Furthermore, under a realistic work-

load consisting of Google’s web search traffic within datacenters

and Alibaba’s inter-datacenter traffic, Uno is expected to reduce

latency for both intra- and inter-datacenter traffic, regardless of the

network load. Finally, Uno is anticipated to offer strong reliability

characteristics, i.e., resilience to packet loss and fast loss recovery,

especially in inter-datacenter WAN environments prone to failures.

Expected Reproduction Time (in Minutes)
The artifacts can be installed and run on a local machine. The

overall time required to install htsim is quite short (≈5 minutes).

However, the run time for the simulations really depends on the

number of generated flows and the degree of load. Specifically, with

realistic workload, it can take quite some time as the number of

generated flows and the network load are high. Below, we estimate

the complexity of each stage of the computational artifact:

• Artifact setup: 20 minutes to download the artifact, install

dependencies, and compile it using the provided files and

instructions.

• Artifact execution: ≈2 days (48 hours) to run all the evalua-

tion scripts and generate all the results used in the paper. The

times reported are for worst-case scenarios, assuming a rela-

tively slow machine and without running multiple scripts

in parallel to speed up the evaluation. We note that most

experiments can be run relatively quickly, such as the ones

in Figure 8 or Figure 12 (in less than an hour), and only some

experiments take significantly longer (like Figure 10).

• Artifact analysis: Most plots are generated automatically

upon running various Python scripts. Some scripts require

to manually copy the results from one script to the other

for plotting purposes. We will also provide raw data, allow-

ing plots to be generated without re-running most of the

experiments.

Artifact Setup (incl. Inputs)
Hardware. This work does not rely on any specialized hardware.

All experiments were conducted using a standard x86 CPU, and

any similar processor capable of running the simulator used in our

study should be sufficient to reproduce the results.

Software. The project requires C++17 and Python3.8 as the

minimum dependencies for building and running both the htsim
simulator and our accompanying Python scripts. For the experi-

ments and computational artifacts presented in this paper, all code

was executed locally on Ubuntu 22.04 LTS via WSL2.

To process and visualize the raw data, we rely on a set of standard

Python packages, i.e., seaborn, scipy, numpy, and pandas.

1208

https://github.com/spcl/Uno_SC25.git
https://github.com/spcl/Uno_SC25.git
https://doi.org/10.5281/zenodo.15916080
https://doi.org/10.5281/zenodo.15916080

Uno: A One-Stop Solution for Inter- and Intra-Data Center Congestion Control and Reliable Connectivity SC ’25, November 16–21, 2025, St Louis, MO, USA

Datasets/Inputs. We did not use any particular dataset or pub-

lic input data for our experiments except for the flow size dis-

tribution traces of Google’s web search workload and Alibaba’s

inter-datacenter traffic, which allow us to test Uno under realistic

workloads. Such traces have already been used in a number of pre-

vious papers and are properly cited in the main paper. Moreover,

we include the files having the CDF flow size distribution in the

actual repository.

The data used for Table 1 was collected using internal resources

of a large-scale cloud provider and is not easily reproducible.

Installation and Deployment. Installing htsim is straightforward

and can be done by executing the provided Makefile located in the

sim/ directory of the repository. This will compile the simulator

and set up the necessary binaries using the default system compiler

with C++17 support.

To assist users in getting started, we provide detailed bash com-

mands for running the Makefile and executing the associated

Python scripts in the README file includedwith the repository. These
instructions are intended to facilitate reproducibility and ease of

setup across typical Linux environments such as the one mentioned

above.

Artifact Execution
Once the htsim software has been successfully built (𝑇1), all exper-

iments and visualizations can be executed using the corresponding

Bash and Python scripts 𝑇2. These scripts are located in the root di-

rectory of the main repository. For most scripts, the corresponding

Figure is automatically generated and store inside the correspond-

ing folder (i.e., fig1_results).
The workflow is quite simple and only has the following depen-

dencies: 𝑇1 → 𝑇2.

Artifact Analysis (incl. Outputs)
For each experiment that is run, the software automatically gener-

ates output data in a corresponding results folder. This data can be

analyzed manually or processed using the same Bash and Python

scripts to produce the plots included in the paper. Most plots are

automatically generated after running the programs.

Artifact Evaluation (AE)

C.1 Computational Artifact 𝐴1

Artifact Setup (incl. Inputs)
We provide two alternative methods to install and use the artifact: 1)

via a Docker container where all packages are already installed and

ready to be used, 2) via source code where the user can manually

download, build, and run all the required packages and scripts.

In ≈ 5 minutes, the source code can be downloaded from either

GitHub or Zenodo with its unique DOI. The Docker container is

only available on Zenodo due to its large size.

• GitHub: https://github.com/spcl/Uno_SC25.git
• Zenodo: https://doi.org/10.5281/zenodo.15916080

Using Docker: Docker version 26.1.3 was used to generate and

test the Docker images.

The Docker container is called uno_container.tar.gz and is

downloadable from Zenodo.

Load and run the Docker image using the following command.

Note, this could take some minutes to run and might need root

privileges.

• sudo docker load -i uno_container.tar.gz

• sudo docker run -it uno:1.0

If viewing images such as plots inside the container is problem-

atic, it is possible to transfer that file to the host machine using:

• docker cp <containerId>:/file/path/within/container
/host/path/target

It is possible to obtain the <containerId> by running

• sudo docker ps

Using Source Files:After having downloaded the source code ei-
ther via git clone or downloading and decompressing the archive

from Zenodo, the user must install all the required packages using

the following commands:

• ./sc25_pkg_install.sh

If you encounter any error and to avoid conflicts with local pack-

ages, we recommend running these commands in a clean Python

environment created with venv. For example, this is how this can

be done:

• python3 -m venv .venv
• source .venv/bin/activate

The htsim can then be installed by running the following com-

mand in the ./sim directory:

• make clean && cd datacenter/ && make clean &&
cd .. && make -j 8 && cd datacenter/ && make -j 8 &&
cd ..

Artifact Execution
Once the artifact has been installed using the steps above, the results

of the paper can be reproduced by running a series of scripts from

the root folder of the project. In particular, the user can run:

• ./sc25_figX.sh where X is the figure number.

Such a script will run all the necessary experiments to reproduce

the figures present in the paper.

The run time for the simulations depends on the number of

generated flows, the size of the topology, and the degree of the

network load. Specifically, with a realistic workload (Figures 10

and 11 in the paper), it can take quite some time as the number of

generated flows and the network load are high. Table 3 estimates

the time required for running the different scripts, while the list

below summarizes in detail the effect of each script:

• sc25_fig1.sh: Figure 1 produces a plot showcasing how

network communication can be mostly latency bound or

bandwidth bound as the RTT of the network changes and

for different message sizes.

• sc25_fig3.sh: Figure 3 illustrates that MPRDMA + BBR

and Gemini fall short in efficiently achieving bandwidth

fairness, while Uno provides fast convergence to fairness

during a mixed incast scenario with intra-DC flows mixed

with inter-DC flows.

1209

SC ’25, November 16–21, 2025, St Louis, MO, USA Bonato, Abdous, et al.

Script Description Estimated runtime
sc25_fig1.sh Effect of large network latency 1 minute

sc25_fig3.sh Simulating Uno’s fairness during mixed incast 5 minutes

sc25_fig4.sh Simulating the effect of phantom queues on queue size and FCTs 5 minutes

sc25_fig8.sh Simulating Uno’s performance during different incast scenarios 30 minutes

sc25_fig9.sh Evaluating Uno’s performance during a permutation workload 10 minutes

sc25_fig10.sh Simulating different degrees of load with realistic traffic 24 hours

sc25_fig11.sh Simulating distinct
𝑖𝑛𝑡𝑒𝑟−𝐷𝐶 𝑅𝑇𝑇
𝑖𝑛𝑡𝑟𝑎−𝐷𝐶 𝑅𝑇𝑇

with realistic workload 24 hours

sc25_fig12.sh Simulating Uno under different queue sizes 1 hour

sc25_fig13.sh Simulating UnoRC under different scenarios 10 minutes

Table 3: Bash scripts for running experiments and their corresponding run times. Note that the estimates are an upper bound
on modern hardware.

• sc25_fig4.sh: Figure 4 shows the effect of phantom queues

for intra-DC traffic. In particular, phantom queues help re-

duce the tail FCT of intra-DC flows while keeping queues

empty but not under-utilized (only by a controlled amount).

• sc25_fig8.sh: Figure 8 showcases more in detail how Uno

is both fair and has good completion times when running

incast with traffic coming from different sources (only inter-

DC, only intra-DC and mixed).

• sc25_fig9.sh: Figure 9 showcases the performance of Uno

compared to other state-of-the-art algorithms when running

a permutation workload.

• sc25_fig10.sh: Figure 10 tests Uno against state-of-the-art
techniques, such as Gemini, under different realistic work-

loads (i.e., Google web search and Alibaba’s WAN traffic)

and distinct degrees of load.

• sc25_fig11.sh: Figure 11 tests Uno and other baselines

under realistic workloads and different inter-DC to intra-DC

RTT ratios.

• sc25_fig12.sh: Figure 12 focuses on the performance of

Uno when changing queue sizes, simulating much larger

inter-DC queues.

• sc25_fig13.sh: Figure 13 focuses on the load balancing

performance of Uno under different workloads and compares

it to other state-of-the-art load balancer algorithms.

Note that from the list above, some figure numbers are missing

as those figures don’t showcase results but just schematic represen-

tations of our work.

Finally, we also provide a script to run and reproduce some of

the results with the least amount of time required. In particular,

experiments for Figures 1, 3, 4, 8, 9, and 13 will be executed. This

can be done by running:

• ./sc25_quick_validation.sh

Artifact Analysis (incl. Outputs)
Once all (or a subset) of the data has been regenerated, it is now

possible to study the results and hence reproduce the results of

the paper. Such plots will be generated in different sub-folders of

artifact_results/ depending on the considered experiment and

Figure.

For each sub-folder, we report a quick analysis of the generated

data and plots:

• fig1/: The sub-folder contains the bottom plot of the figure

used for Figure 1 of the paper.

• fig3/: This sub-folder includes the three files used to gener-
ate Figure 3. Each figure represents a different congestion

control algorithm.

• fig4/: This sub-folder includes two plots used to generate

Figure 4: one plot showcase the evolution of the queues with

and without phantom queue while the third plot showcases

average and 99th FCTs with and without phantom queues.

• fig8/: This sub-folder includes 2 files used in Figure 8. One

file focus on the cwnd evolution of Uno under different incast
scenarios, while the other file focuses on comparing Uno’s

performance to the other congestion control algorithms.

• fig9/: This sub-folder includes two files used in Figure 9. In

particular, we evaluate Uno’s performance during a permu-

tation scenario while also changing the degree of oversub-

scription across the datacenters.

• fig10/: This sub-folder includes two files including the bar

charts in Figure 10 showcasing Uno’s performance with real

datacenter traces.

• fig11/: This sub-folder includes the bar charts of Figure 11.
• fig12/: This sub-folder includes one file showcasing Uno’s

performance when changing the inter-DC switch queue

sizes.

• fig13/: This sub-folder includes 3 files used to generate

Figure 13, focusing on UnoRC’s performance in a number of

scenarios.

We note that all our contributions (𝐶1-𝐶3) are present and rele-

vant in all of the results showcased here.

1210

	Abstract
	1 Introduction
	2 Coexistence among inter- and intra-DC traffic: challenges and opportunities
	2.1 Diverse congestion feedback granularity
	2.2 Heterogeneous hot spots
	2.3 BDP heterogeneity
	2.4 Inefficient loss handling

	3 Uno Design Goals
	3.1 Unified congestion control logic
	3.2 Near-zero queuing
	3.3 Reliability and Load Balancing

	4 Uno: a unified system for both intra- and inter-DC communication
	4.1 UnoCC
	4.2 UnoRC

	5 Performance Evaluation
	5.1 Simulation Setup
	5.2 Simulation results

	6 Discussion
	7 Related Work
	8 Conclusion
	Acknowledgments
	References
	A Overview of Contributions and Artifacts
	A.1 Paper's Main Contributions
	A.2 Computational Artifacts

	B Artifact Identification
	B.1 Computational Artifact A1
	C.1 Computational Artifact A1

